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Abstract

Advances in DNA microarray technology has led to generation of humongous gene ex-
pression data which needs to be analyzed. Clustering and biclustering have found their
application in the analysis of gene expression data. Traditional clustering algorithms fail
as most of the genes are responsive only to a small subset of samples/conditions rather
than the entire set of samples/conditions. Also, a gene that may be responsible for more
than one biological activity and hence may belong to more than one cluster. Similarly

a sample may trigger the expression of genes responsible for more than one biological
activity and hence may belong to more than one cluster. At the same time, there may
be some genes/conditions that do not account for any biological function and thus do
not belong to any. Traditional clustering algorithms typically do not allow the clusters to
overlap and are exhaustive. Biclustering is a technique wherein genes and samples are
clustered simultaneously so that the genes responsive only to the selected set of samples
are clustered together. Biclusters are allowed to overlap both on genes as well as on con-
ditions and they are not exhaustive. Thus Biclustering is more suitable for clustering gene

expression data than traditional clustering algorithms.

Different biclustering algorithms use different heuristics and thus produce different
biclustering solutions. Moreover these algorithms are sensitive to random initialization
and threshold parameters. Given this, an end user often faces the problem of select-
ing the right algorithm for the application/data. One way to improve the robustness and

quality of solutions is to combine/ensemble solutions and obtain a consensus. Several



ensemble techniques have been successfully applied for supervised classification and un-
supervised clustering. Combining biclustering solutions is more challenging as compared
to combining classification and clustering for several reasons: one, biclusters from two
different solutions typically involve different sets of conditions, second, biclusters are

non-disjoint/overlapping and thirdly, they are non-exhaustive.

We present three ensemble techniques for the biclustering problem that allow si-
multaneous overlap of objects as well as attributes. As different schemes/solutions may
assign different labels to the same bicluster, biclusters are aligned appropriately using
Hungarian method, in the first two approaches. In order to solve the label correspon-
dence problem, one needs to solve thdimensional bipartite matching which is known
to be NP-hard foik >= 3. To get around this problem, one of the schemes was fixed
as the reference scheme and the other solutions were aligned with it. The first algorithm,
BiETopti uses optimization technique to generate the consensus. For the formulation of
optimization problem, global labels are defined. Through experimental studies we show
that BiETopti improves the quality of the biclusters as compared to those in the input
solutions/schemes. The results are promising but has a limitation of having fixed number
of biclusters in the input schemes. Generally this condition is difficult to meet in biclus-
tering solutions. To overcome this limitation, another ensemble algorBhAT classi
is proposed. This algorithm makes use of classifiers such as Discriminant Analysis and
Support Vector Machine for the ensembling purpose. Experiments on synthetic as well as
real data sets show th&t ET'classi performs better tha®i ET opti not only in terms of
quality but also in terms of time. Further, Discriminant Analysis as a classifier turns out

to be a better option than Support Vector Machine.

Both the above algorithms are compute intensive as they involve label correspon-
dence followed by optimization problem (directly or indirectly) to be solved. We do away
with the requirement of label correspondence in our third approach dadled'metaclus.

The algorithm does not require any optimization problem to be solved. It simply pools



in all the biclusters and uses statistical similarity measures like Mutual Information to
form metaclusters of similar biclusters. We believe that biclusters, sharing high content
of information about each other and less information with other biclusters, form a more
cohesive group. Mutual Information has been considered to be a more general measure to
capture linear as well as non linear associations or dependencies amongst genes. Besides,
it is also robust towards noise. Finally voting is done to form the consensus. Exper-
imental studies showed thati E'T'metaclus provides better biclusters thagy ET opti

both in terms of quality as well as time. However, there is a tradeoff between quality
and time amongsBiETmetaclus and BiET classi. BiET classi performs better than
BiETmetaclus in terms of quality most of the times whereBsET'metaclus is faster
thanBiET classi.

MATLAB was used as the platform for the implementation of our work. Optimiza-
tion in BiETopti was done using LINGO tool. Experiments were conducted both on
synthetic data sets and real data set&rabidopsis ThalianaSaccharomyces Cerevisiae
Human Breast Cancedata andDiffuse Large B Cell Lymphomarlo assess the quality
of biclusters on synthetic data sets, measures like biclustering error and agreement score
were used whereas the biological significance of the biclusters on real data sets was val-
idated using online biological tooBAVID (Database for Annotation, Visualization and
Integrated Discovery) andSAT(Regulatory Sequence Analysis Toolbox).

We hope that our work would help in delivering useful information to biologists in

the analysis of gene expression data.
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Chapter 1

Introduction

1.1 Motivation

The analysis of gene expression data (also referred to as genomics data) has become
a highly popular technique for studying the biological mechanism of organisms. One
can study behaviour of thousands of genes simultaneously in a single experiment in a
microarray experiment. The ability to measure the expression of a whole genome under
different experimental conditions with the help of microarrays has led to the generation
of large scale gene expression data. Analysis of the data allows the discovery of groups
of genes that share similar expression profile. Moreover it is expected that a group of
genes responsible for one biological process will show similar expression profiles. Hence,
analysis of the genomic data allows us to identify groups of genes that are responsible for
different biological processes and also helps in discovery, validation and understanding
of various diseases.

Classification and clustering have been successfully used for more than a decade for
the analysis of expression data. Traditional clustering/classification algorithms [BDSY99,
ESBB98, THC 99, Cla99] cluster the genes based on their expression profiles under all

the conditions. These traditional algorithms work well for small data sets but fare poorly

1



when number of experimental conditions is large. This is due to the fact that genes appear
to be at equal distance from each other when the number of conditions is large. All the
conditions are treated equally by these algorithms while computing similarity amongst the
genes whereas only a small subset of conditions affect the cellular processe8Z]FB
Other conditions, which do not contribute to the cellular process, add to the background
noise. Thus grouping genes based on this small subset of conditions is more relevant in

the study of gene expression data.

Biclustering is the term coined by Hartigan [Har72] to group objects/genes based
on their expression profiles under a relevant subset of features/conditions and it was used
for the first time by Cheng and Church [CCO0Q] for the analysis of gene expression data.
Biclusters are allowed to overlap, both on objects/genes as well as on features/conditions.
The technique thus, has been found very useful in the analysis of gene expression data
wherein genes responsible for one biological function are influenced by a subset of condi-
tions instead of the entire set of conditions and a gene (/ a condition) may be responsible

for more than one biological process.

Various biclustering algorithms exist in literature [IF82, PBZ 06, CC00, BDCKY03,
LWO7]. They lack robustness and stability with respect to random initialization and in-
put parameters. Each algorithm aims to optimize different objective function leading to
different solutions. For an end user, who has no clue about which objective function is
best suitable for the application, the choice of a particular algorithm becomes difficult.
Ensemble techniques come to the rescue in such situation. The principle underlying the
ensemble techniques is to generate a set of models (also referred to as input schemes/input
solutions/biclustering solutions/partitions in literature) and aggregate them into a single
consensus model. Ensemble methods aim to provide solutions which are more robust to-
wards random seeds and input parameters. They have been proved to be more stable and
accurate than a single solution [SG02, DF03, WDHO01, HY04, Die00, MO97] in the area

of supervised classification and unsupervised clustering.

2



In this work, we extend the idea of ensemble techniques to improve the perfor-
mance of biclustering solutions. However, ensembling biclustering solutions is far more
challenging as compared to ensembling classification and clustering. This is due to the
following reasons, first being the overlapping nature of biclusters. The overlap may be on
genes, on conditions or on both. Another challenge arises from the fact that the attribute
set of different biclusters may be different as biclusters are defined by a subset of attributes
rather than the whole set. Also biclusters are non exhaustive in nature. Moreover different
biclustering solutions may contain different number of biclusters. Most of the work done
on ensembling clustering/classification assume that the clusters are non-overlapping and
all the solutions contain a fixed (s&y number of clusters. Little work has been done
where the clusters are allowed to overlap and since these algorithms work on the entire
set of attributes, none of them needs to address the second challenge faced in biclustering.
Some work has been done for the ensemble of projected clustering and co-clustering so-
lutions. Wang et al. [WLDJ11] presented an ensemble solution for co-clustering wherein
they extract block-constant biclusters generalizing the grid-style partitions to allow dif-
ferent resolutions in different parts of the data matrix. A pair of biclusters may overlap
on objects or on features but not on both at the same time. Gullo et al. [GDT09] pre-
sented an ensemble solution for projective clustering wherein an object may belong to
more than one biclusters but the total sum of the membership is one thereby meaning that
if an object completely belongs to one bicluster it does not belong to any other. They
project the clusters on one dimension in a fuzzy way. Biclustering is different from these
problems/solutions wherein an object/feature may have a total membership more than one
and a bicluster is defined by more than one feature. Also, bicluster may overlap both on

objects and features simultaneously.

In this work, three approaches for ensembling biclustering solutions are proposed.
The first algorithm calledBi ETopti [AG13a, AG17] uses optimization techniques to

generate consensus mod&ti E'Topti assumes that the input biclustering solutions con-

3



tain equal number of biclusters. In our second approach catddl’classi, we drop
this assumption and use classifiers to predict the labels. Both these algorithms involve
expensive steps of label correspondence and optimization (directly or indirectly). In the
third approach calle®i E'T'metaclus [AG13b], we do away with both of them and use
the concept of metaclustering instead. Mutual Information between biclusters is used to
form the metaclusters and a simple voting technique is used to form the consensus.

In a parallel work, Hanczar and Nadif (HN) [HN11] proposed the use of bagging
to improve the performance of biclustering schemes. They use bootstrapping on various
biclustering algorithms and use the concept of metacluster to ensemble them. All our

algorithms outperform their algorithm.

1.2 Problem Definition

Let G be a set ofV genes and’ be a set ofl samples/conditions. Let be anN x d
expression matrix where each row represents the expression of a genel \sadeples.

E is subjected to a biclustering algorithm which delivers a biclustering scheme/solution
m; consisting ofk; biclusters.r; = (BC4, BC,, ..., BCy,), BC; is a bicluster represented

by a tuple(G;, C;), G; being a subset of genes atl a subset of conditions. Note that

in general different biclustering schemes may contain different number of biclusters. Let
T, T, ..., Ty be theH biclustering schemes so obtained and\gt G x C' — 2{0--:}

be a function that yields a set of labels for each gene condition(pait.). Note that

since the biclusters may overlap both on genes and conditions, a (gene, condition) pair
may be assigned more than one label. Also, there may be a (gene, condition) pair which
does not belong to any bicluster. Such a pair is given label 0.ALeY,, ..., Ay denote

the H labelings ofG x C'. The problem of bicluster ensemble is to derive a consensus
function A\, which combines thé/ biclusterings and deliver a biclusteririgto achieve

one or more of the following aims:

1. Itimproves the quality of the biclusters.

4



2. Itis more robust and stable than its constituent schemes.

1.3 Our Contribution

There are two main steps in any ensemble algorithm [VPRSG&herationand Con-
sensusGeneration procesdeals with generation or creation of a set of input partitions.
There are various ways to generate the input partitions. Partitions can be generated by
running different clustering/biclustering algorithms on same data set, or by running same
algorithm on different samples of same data set, or by executing the same algorithm a
number of times on the same data set, each time with different initialization or by chang-
ing the input parameters/threshold values. The purposemdensus process to inte-

grate the partitions obtained in the generation step.

We propose three approaches for bicluster ensemble. In the first two approaches
namedBiETopti and Bi E'T classi respectively, the schemes are generated by running a
biclustering algorithm several times with different initializations and the similar biclusters
are aligned using Hungarian algorithm [Kuh55]. BiETopti, an objective function is
obtained that captures the dissimilarity of the new labels with the aligned biclusters both
for genes as well as for samples. The consensus is obtained by minimizing the value of the
objective function (i.e. dissimilarity). 1®iET opti we assume that the number of biclus-
ters in all the biclustering solutions is same. This assumption is droppBdHfi'classi
wherein each bicluster is individually subjected to a classifier to refine labeling. How-
ever, label correspondence is still required to be able to do voting to generate the final
consensus.

Besides label correspondence, b&h- T opti and Bi ET classi, involve optimiza-
tion (directly or indirectly) and hence are compute-intensive. In the third approach called
BiETmetaclus, all the biclusters provided by various biclustering solutions are collected

in a pool and metaclusters are formed based on the information they share about each
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other thereby eliminating both the expensive steps of label correspondence and optimiza-
tion. Voting is then used to generate the consensus model. This technique is similar to
HN as both form metaclusters of similar biclusters and consensus is formed by voting.
However it differs from HN, one in that the schemes are generated without bootstrapping
and secondly, Mutual Information is used in place of Jacquard Index. Mutual Information
has been considered to be a more general measure to capture linear as well as non linear
associations or dependencies [KSG04, SKR, BKOO, MCA'98]. According to Priness

et al. [PMBGO07], mutual information is resistant to outliers and missing data. Besides, it

is also robust towards noise.

The algorithms were tested both on synthetic as well as real data sets. All the algo-
rithms have been coded using MATLAB [MAT10]. LINGO software [LINO6] was used
to solve the optimization model. Quality of biclusters in case of synthetic data sets was
validated using Biclustering Error(BCE)/Error Rate and Agreement Score(AS). For real
data sets, validation was done using external biological information by determining the
functionality of the genes of the biclusters from Gene Ontology (GO) [A8H and
common patterns (motifs) in the promoter regions of the genes of a bicluster with the
help of biological toolsDAVID (Database for Annotation, Visualization and Integrated

Discovery [HSL08] andRSAT(Regulatory Sequence Analysis Tool) available on line.

Experiments performed on synthetic data sets show that the biclusters produced by
all the three approaches were better than the input solutions. The results were also com-
pared with HN which was the only available bicluster ensemble algorithm. It was found
that biclusters produced by all the three algorithms were better than HN too. For real
data sets too, the biclusters produced were found to be biologically more significant than
the input biclusters. Experiments show tatF T opt: outperforms HN. It is also exper-
imentally seen thaBiFET classi and BiETmetaclus both outperformBiET opti both
in terms of time and quality. As a result, bothi ET'classi and Bi ETmetaclus also

beat HN in quality and time. As compared B ET classi, BiETmetaclus improves
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upon the time significantly buBiET classi provides better biclusters as compared to
BiETmetaclus. Thus there is a tradeoff betweéh E'T'metaclus and BiET classi in

terms of time and quality.

1.4 Organization of Thesis

Rest of the thesis is organized as follows: In Chapter 2, an overview of the essential
concepts in biology are provided for better understanding of our work. Biclustering al-
gorithms, ensembling and related work is presented in Chapter 3. The first algorithm
for ensembling biclusters’3i ETopti is explained in Chapter 4. Second algorithm for
ensembling biclusterd3i ET'classi is presented in Chapter 5. The last algorithm for en-
sembling, Bi ETmetaclus is explained in Chapter 6. Finally, in Chapter 7 we present

concluding remarks to our work.






Chapter 2

Biological Overview

In this chapter, we will review some concepts regarding microarray bioinformatics that are
key to identify the design requirements of gene expression analysis [APS06, MDPMO08,
RJLS10, GSS91]. These concepts will help to understand the nature of input data and to

evaluate the results of the analysis process.

2.1 Cell

The basic unit of biological activityCell is the structural and functional unit of all living
organisms. It contains jelly like material called protoplasm and is surrounded by a cell
membrane. There are two components of protoplasm: nucleus that contains the genetic
material and cytoplasm that is the semi fluid material in which cell organelles like mito-
chondria, ribosomes etc. float. There are two types of cells depending on the presence of
nucleus i.e. prokaryotic and eukaryotic. Cells of primitive organisms (such as bacteria)
which do not have a nucleus are called prokaryotic cells and those of higher organisms

which have a well defined nucleus are called eukaryotic cells
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Organic molecules of Cell

There are four types of basic molecules present in a cell: Proteins, Carbohydrates, Lipids
and Nucleic acids. Proteins are the most diverse and complex macromolecules in the cell.
They are used for structure, function and information. They are made of linearly arranged
amino acids. There are twenty naturally occurring amino acids from which all proteins
are composed. Carbohydrates are source of energy for the cell. Lipids are hydrophobic
molecules and are constituent of the membrane of the cell and other cell organelles. DNA
and RNA are the nucleic acids that encode the genetic information for synthesis of all

proteins.

DNA - Deoxy-ribose Nucleic Acid

DNA contains the genetic information of a cell. It is a long sequence of nucleotides
as shown in Figure 2.1. These are molecules made of an organic base, a sugar group
i.e. deoxyribose and a phosphate ion. It is responsible for storage of information about
an organism’s inherited characteristics. DNA is the hereditary material in humans and
almost all other organisms. Genetic information from parent is transferred to its offspring
through DNA which is a set of blueprint needed to construct other components of cells,

such as proteins and RNA molecules.

Figure 2.1: DNA - Deoxy-ribose Nucleic Acid.

Every cell in a body has the same DNA. The information in DNA is stored as a code

made up of four chemical bases or nucleotides: A(adenine), T(Thymine), C(Cytosine) and
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G(Guanine). The DNA molecule consists of two strands. The bases in the two strands
are paired, so that A in one strand matches T in the other, and C matches G. This way the
sequence of one strand completely determines that of the other, complement strand. The
paired long strands are coiled into a spiral called a double helix. Each DNA strand has
a polarity, from head called the 5’ end and a tail called the 3" end. DNA has a lagging
strand 3'-5’ and a leading strand 5’-3’. The 5’ end of a strand matches with a 3’ end of
the other strand. The non coding part iigrons separates the coding sequences called
exonsin the DNA of eukaryotes. The structure of gene is shown in Figure 2.2. It must
have Exons, start signals, stop signals and regulatory control elements. The average gene

with 7-10 exons spread over 10-16 kb of DNBpen reading frame (ORF)is that part

Transcription Unit

S Start Codon Stop Ccldc 3
\\ trons
5'noncoding 3" noncoding
sequence sequence

Figure 2.2: Gene.

of DNA that codes for the formation of proteindJpstream region and downstream
region of the DNA is the portion of DNA near the head region (5’ end) and the tail region
(3’ end) respectively.

Property of DNA

DNA can replicate, or make copies of itself. Each strand of DNA in the double helix

unzips itself and serves as a pattern for duplicating the sequence of bases. This happens

11



when cells divide because each new cell needs to have an exact copy of the DNA of the
old cell. Most genes contain the information needed to make functional molecules called

proteins.

RNA - ribose nucleic acid

RNA is a molecule which is chemically similar to DNA. Both RNA and DNA are made

up of a chain of nucleotide bases, but they have slightly different chemical properties.
RNA uses sugar ribose instead of deoxyribose in its backbone. RNA uses the base Uracil
instead of Thymine. RNA is a single stranded structure as shown in Figure 2.3. RNA per-
forms many functions. RNA plays a key role in the synthesis of various proteins in a cell.

In some lower organisms it also acts as the carrier of genetic material. There are three

N\

Figure 2.3: RNA - Ribose Nucleic Acid.

main types of RNA molecules. The RNA that transfers DNA code to ribosome for trans-
lation is called messenger RNA (mRNA). Transfer RNA (tRNA) helps in bringing the
amino acids according to the ribosomes for protein synthesis. Ribosomal RNA (rRNA) is
major component of the protein synthesizing cell organelle called ribosome. Translation,
the second step in protein formation takes place in the cytoplasm. The mRNA interacts
with a specialized complex called a ribosome, which reads the sequence of MRNA bases.
Each sequence of three bases, called a codon, usually codes for one particular amino
acid. Amino acids are the building blocks of proteins. Figure 2.4 explains the flow of

information from DNA to protein.
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Figure 2.4: Flow of Information.
2.2 Gene and Gene Expression

Gene the heredity factor, is the functional unit of DNA. The DNA segments that carries
genetic information are called genes. It is a stretch of DNA that encodes a protein or an
RNA molecule. Genes that code for protein, carry information which determine various
characteristics of an organism like eye colour, hair etc. and the non protein coding genes
code for RNA moleculesPhenotyperefers to the physical characteristics of an organism
i.e. what that organism looks like. The genetic encoding of its phenotype is called its
genotype The genotype consists of gene combination for a trait (e.9g. RR Rr rr) and
is shown in Figure 2.5. R is gene for red colour and is dominant whereas r the gene

responsible for white colour in flowers is recessive. The physical feature resulting from a
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genotype is the phenotype (e.g. Red , Red and White). Three genotypes yield only two
phenotypes.

Figure 2.5: Genotype: R-dominant gene r-recessive gene.

The Genome size varies from organism to organism. The yeast contains around
6000 genes whereas there are about 40,000 genes in human beings. All the genes are
not expressed when subjected to a condition. The process of turning genes on and off is
known as gene regulation. Gene regulation can occur at any point during gene expression,
but most commonly occurs at the leveltadnscription (when the information from DNA
is transferred to MRNA).

Gene Expressions the process by which :

e information from a gene sequence is manifested into structure and functions of a

cell.
e genotype of an organism is manifested into its phenotype.

We say that a genetic information in gene is expressed when the protein it codes
for, is synthesized and is responsible for the phenotype of an organism. Different genes
or the subsets of genes may be responsible for different phenotype of an individual. A
subset of genes responsible for the hair color may be different from the genes responsible
for the height of an individual. The genotype of an organism influences the phenotype.
The characteristics of an organism may be the result of the coordinated expression of
one or several genes and their interactions with the environment. The environmental
conditions influence the expression of genes. A gene may be highly expressed under

some conditions and may be suppressed under some other set of conditions. Transcription
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factors (TF) are proteins that bind to one (or more) specific sequence(s) of nucleotides
called theTranscription Factor Binding Site(s) (TFBS) on the promoter region of a
gene. Promoters are sequences of DNA that are the start signals fioartkeription

of MRNA. Terminators are the stop signals. The enzyme RNA Polymerase moves along
the strand of the DNA. As it encounters each DNA nucleotide, it adds the corresponding
complementary RNA nucleotide to a growing mRNA strand. Once the stop signal is
reached the newly constructed mRNA strand is released. Finally, it leaves the nucleus and
serves as a template for the synthesis of protein in the cytoplasm at the ribosome. During
Translation, message carried in mMRNA is converted into amino acids and the synthesis
of the corresponding proteins at the ribosomes takes place. Amino acids are formed from
the four bases (A, U, C, G). The sequence of nucleotides in the mRNA determines the
sequence of amino acids in the synthesized protein. Each amino acid is actually a triplet
of three nucleotide bases calleccadon To code for the 20 essential amino acids a
genetic code must consist of at least a 3-base set (triplet) of the 4 bases. If one considers
the possibilities of arranging four things 3 at a timex(4} x 4), we get 64 possible code
words, or codons (a 3-base sequence on the mRNA that codes for either a specific amino
acid or a control word). Three codons (TAA, TAG and TGA) indicate the end of a protein
sequence and are called the stop codons. The codon AUG represents methionine and is
also the translationatart signal. All others code for a particular amino acid. Most of the
amino acids are encoded by more than one codon. The expression of a gene is controlled
and regulated by one or more TFs and their binding to the TFBS in the promoter regions
of the gene. Genes showing same expression profile or behaving similarly are said to be
co expressed. Such genes are regulated by the same set of TFs and hence have common
TFBSs. In other words genes having similar expression profiles, thus belonging to the
same bicluster, are considered to hawwmmon regulatory mechanism or signature

or motif in their promoter region [HZGDO05]. Binding of Transcription factors with the

TFBS may be regulated by many conditions. In fact expression of one gene may be
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governed by the expression of another gene. Some genes may code for a protein which
in turn may act as a transcription factor and regulate the expression of some other genes.
The entire network is quite complex. Also, the gene to protein correspondence is not one
to one. There are genes that may code for more than one protein. Ideally measurement of
gene expression should be done by measuring the amount of protein produced. However,
it is often easier to measure one of the intermediate product like mRNA to infer the gene’s

expression level.

2.3 Microarray Experiments and Expression Matrix

A microarray is a small chip on which DNA molecules are attached in fixed grids. This
chip is made up of chemically coated glass, nylon membrane or silicon. To decipher the
logic of gene regulation in an organism, the simultaneous study of all the genes of an
organism is important [Lan05, ZWiD4, AMKO0O, Kau93]. A vast amount of expression

data has been collected for different organisms (healthy and diseased) during different de-
velopmental stages, changing environmental/chemical/clinical conditions, or at different
time points. Biologists are facing a problem in extracting meaningful information from
this humongous data. Development of efficient computational tools to analyse this data,
is the need of the hour. Scientists need to know the set of genes that are responsible for a
particular biological activity. The activities for which they may be interested may be the
formation of a protein, genes causing stress, high blood pressure, diabetes, heart ailment,
tumor or AIDS. In plants, these activities include reproduction, growth of a particular
part of a plant, photosynthesis and absorption of nutrients from soil. The biologists are of
view that the genes responsible for any activity get triggered under certain conditions and
must have some sort of association amongst themselves. Genes with similar expression
profile share something common in their regulatory mechanism was suggested by Vilo et
al. [VBJ"00] and Dhaeseleer et al. [DWFS98, DLS99]. The level of a certain gene can
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vary across the conditions. The conditions in the data matrix may be a time series during
a biological process (e.g., the yeast cell cycle) or a collection of different tissue samples
(e.g., normal versus cancerous tissues). If we are able to find the genes responsible for a
disease, then conditions that affect the expression of these genes can also be found out.
Also the other genes affected by these conditions can also be found out. Development
of efficient computational tools for the analysis of this huge amount of data, to be able
to extract biologically relevant information from it, is the most important requirement of
today. If one can extract fewer genes showing a pattern, association or correlation in their

expression values from the data, then the task of a biologist is greatly simplified.

EA B2 Em E1 E2  E3  E4 oo Em
Gene 1 |-| G .|
Gene 2 Gene 2
Gene i Gene i e
Gene n Gene

Figure 2.6: Microarray Experiments: each experiment corresponds to a condition.

The gene expression data is usually displayed as a matrix. Various experiments are
performed wherein genome is subjected to different conditions as shown in Figure 2.6.
The behaviour of each gene under these conditions is stored in a matrix. Row in the
matrix corresponds to the expression profile of a gene and each column corresponds to a
sample or a condition [CSTO0O0a]. The conditions might be different individuals, different
experimental conditions of the organism, or different tissues (e.g., cancerous vs healthy)
from the same individual. Figure 2.7 shows an example of a gene expression matrix.

The (ij)™ entry of the expression matrix represents the expressidft gene undey”
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Figure 2.7: Gene Expression Data Matrix.

sample. The original data may contain noise and/or missing values that are a result of the
experimental procedure. Figure 2.8 shows the heat map of gene expression data of human

breast cancer.
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Figure 2.8: Gene Expression Data.
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The motive behind studying the gene expression data is to study the functionality
of genes and that the genes with similar expression patterns are likely to be involved in
similar processes, and hence have similar functionality. Other than deducing function
of unknown genes, gene expression analysis has proven to be helpful to identify dis-
eases profiles, deciphering regulatory mechanisms, genotyping and drug developing. The
number of genes to be analysed is very large so computational aids are needed, and the

biological challenge should be formulated as a mathematical problem.
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Chapter 3

Preliminaries and Related Work

In this chapter we present biclustering algorithms that have been used in our work. This
is followed by the techniques used by researchers for generating ensembles in the area of
classification and clustering. We also discuss the work done to generate ensembles for
the closely related problems of co-clustering and projected clustering and discuss how
biclustering is different from them. Parallel work due to Hanczar and Nadif [HN11]

is also discussed here. Validation techniques used to assess the quality of biclusters are
explained subsequently and the details of the data sets used in the study are given at the

end.

3.1 Biclustering Algorithms

Several biclustering algorithms have been developed and applied to microarray analysis.
Amongst these the most popular are BIMAX, CC, ISA, OPSM and xMotif. Performance
of BIMAX deteriorates with increasing degree of overlap whereas OPSM is sensitive to
noise. Therefore we proceeded with the rest of the three algorithms and the details of

these is given here to get the insight of the same.
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3.1.1 Cheng and Church (CC) Algorithm

Cheng and Church were the first ones to propose an algorithm for biclustering. They
consider that biclusters follow an additive model and use a greedy iterative search to
minimize the mean square residue. The algorithm identifies biclusters one by one.

Let e;; be the expression af* gene undey condition of the expression matrix E
with N genes and conditions. Let (1,J) denote a bicluster where | and J are the subsets
of genes and conditions. Mean square residue score of the bicluster (1,J) is then defined

as:

1

MSR(I,J) = m Z (eij — eig —erj +ery)?
i€l jeg

wheree;; is the row mean of row , e;; is the column mean of columpande;,, is the
overall mean over the entire submatrix.

The aim is to find a bicluster that minimizes the MSR. The procedure begins with
the whole matrix as a bicluster and then deletes rows and columns with the highest MSR
score as long a8/SR(I,J) > §, whered is the threshold parameter. Then rows and
columns with lowest score are added as long&sR (I, J) < d. To find more biclusters,
the already found bicluster is masked with random values and the process iterates till

desired number of biclusters is obtained.

3.1.2 xMOTIF Algorithm

Murali and Kasif[MKO03] proposed an algorithm that uses discretized expression matrix
as input. The data is first discretized into a set of symbols by using a list of statistically
significant intervals for each row. They aim at finding conserved gene expression motifs
(XxMOTIFs). xMOTIF (bicluster) is defined as a subset of genes that are simultaneously
conserved across a subset of the conditions. The expression level of a gene is said to

be conserved across a subset of conditions if the gene is in the same state in each of the
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conditions in this subset. The obtained set of rows and columns is then called a bicluster
if it contains more than am fraction of all samples. The accuracy of the algorithm
depends on how the data is discretized. xMotif is able to find biclusters with constant
values and with constant rows. Data may contain several biclusters and the algorithm
finds the largest such bicluster. To identify other XMOTIFs, an iterative strategy wherein
samples satisfying each xMOTIF are removed, is adopted. Then the new largest xMOTIF

is searched. This process continues until all samples satisfy some xMOTIF.

3.1.3 lterative Signature Algorithm (ISA)

Bergmann et al. [BIBO3] introduced Iterative Signature Algorithm (ISA) that seeks bi-
clusters consisting of co-regulated genes and conditions. It extracts biclusters based on
the assumption that genes (/conditions) belonging to a bicluster exhibit similar expres-
sion profile with high expression values. The algorithm iteratively and alternatively com-
putes gene scores and condition scores. It generates two normalized copies of the gene
expression matrix, one with normalized rovis, (normalized on genes) and one with
normalized columng- (normalized on conditions). Starting with an initial set of genes,

it computes the condition scores by taking the produadt@iwith the gene vector which

has 1 for the selected genes and 0 otherwise. Conditions with scores above a threshold
(t.) are selected. It then computes the gene scores in a similar way by taking the product
of E- with the condition vector. Genes with scores above a threshgldi(e selected.

The set of conditions and genes are refined by repeating the process iteratively unless
the convergence criterion is met. The algorithm is executed for a large number of input
seeds and the modules are reconstructed from the recurring fixed points using a proce-
dure resembling agglomerative clustering by fusing the solutions that were distinct but

very similar.
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3.2 Overview of Ensembling

Method of ensembling consists of two main steps [VPRS@éherationof a set of input
models and the integration of all to obtaic@nsensus

Generation Processhe ensembling process begins with the generation of schemes.

In general, algorithms that provide more information about the data should be used for
the generation step. It is difficult to know beforehand which algorithm is appropriate for
the problem. It is recommended to make a diverse ensemble as more varied the set of
partitions are, more information is available for the consensus function. Aggregation of
same schemes is of no use. Various sources of diversity are possible which may be used
to generate schemes. Different schemes may be obtained by applying different biclus-
tering algorithms on the data set or by applying same biclustering algorithm on different
samples of data set (bagging and boosting). Schemes may be generated by applying same
algorithm on the data set by varying the threshold parameters/initialization.

Consensus Proces®nce the schemes/solutions are generated, they have to be com-
bined to form the consensus. Two main approaches are used to generate a consensus
partition-object co-occurrencandmedian partition

In the first approach, consensus patrtition is obtained depending upon the frequency
with which two objects occur together or belongingness of an object to one cluster. One
way to do this iRelabeling and VotingAK10, AKO8, WDHO01, DWHO02, FB03] and an-
other is usingCo-association MatriYACNO8, Fre01, FJO5]. The Relabeling and Voting
methods solve a label correspondence problem as a first step followed by voting to obtain
the final consensus. Heuristic suchibggartite matchinghas been used to solve the label
correspondence problem. The idea of co-association is used to avoid the label correspon-
dence problem and they map the partitions in the cluster ensemble into an intermediate
representation i.e. the co-association matrix which is formed by effectively merging the
similarity matrices of all the partitions. Using co-association matrix as the similarity mea-

sure between objects, consensus partition is obtained by applying a clustering algorithm.
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In the median partitionapproach, an optimization problem is solved to obtain con-
sensus partition. The median partition is defined as the partition that maximizes the simi-
larity with all partitions in the cluster ensemble and is defined as:

H

7 = arg max E stm(m, ;)
s
i=1

where sim(m;, 7;) is a similarity between two partitions;, 7;. The median partition
problem defined with the Mirkin distance [Mir96] has been proved to be NP-hard. Though
no theoretical results are known for other similarity measures, this method is considered
to be computationally expensive.

Other approaches to obtain consensus function indualeh and hyper graph algo-
rithms [SGO02], Information theoretic approaches [TJP03], finite mixture model [TJP04],
LAC [DGM*07], genetic algorithms [YALO6], NMF [LDJ07] and Kernel method [VPCMRSQ8]

These methods either fall under object co-occurrence or median partition.

3.3 Related Work

Ensembling techniques have been used successfully in the area of classification and clus-
tering to improve the quality of results. For the classification problems, bagging and
boosting [DF03, FB0O3, HN11, MJ87] have been used as standard techniques to generate
ensembles. Bootstrap aggregating, often abbreviated as bagging, involves having each
model in the ensemble vote with equal weight. Bagging trains each model in the en-
semble using a randomly drawn subset of the training set. Boosting is a general method
for improving the performance of a weak learner and involves incrementally building an
ensemble by training each new model instance to emphasize the training instances that
previous models mis-classified. The classifiers produced by the weak learners are then
combined into a single composite strong classifier in order to achieve a higher accuracy

than the weak learners classifiers would have had. In some cases, boosting has been

25



shown to yield better accuracy than bagging, but it also tends to be more likely to over-
fit the training data. By far, the most common implementation of boosting is Adaboost,
designed by Schapire [Sch01].

In clustering, two approaches are largely used to design consensus functions. One
that establishes label correspondence between various partitions and then uses a con-
sensus function; second that eliminates the need of label correspondence and computes
the consensus function directly. Most of the work [Fre01, Fre02, HY04, KK98, SG02,
TJPO3] falls in the second category whereas the works of [KGO7, TMbJP04] fall in
the first category. Majority voting, co-association, fusion using procedure similar to ag-
glomerative clustering, graph partitioning, statistical and information theoretic methods
are several approaches that have been used in literature to design consensus functions
for clustering. A detailed survey of consensus functions for clustering can be found
in [GSIMO09]. The adaptive clustering ensemble technique proposed in [TMbJP04] uses
sampling techniques to generate individual partitions of the ensemble. Optimization tech-
niques [GDT09, SMPX10] have also been used to generate ensembles for clustering and

projective clustering.

Three heuristics (CSPA, HGPA and MCLA) based on hyper graph partitioning are
proposed by Strehl and Ghosh [SG02] wherein clusters in all the schemes are represented
by hyperedges in a hyper graph. In the Cluster-based Similarity Partitioning Algorithm
(CSPA), a similarity matrix is formed from this hypergraph. It can be viewed as the ad-
jacency matrix of a simple graph having objects as the nodes and edge between nodes
has a weight equivalent to frequency of the two objects being grouped together in a clus-
ter. To obtain consensus partition, METIS [KK98] algorithm is used. The Hyper Graph
Partitioning Algorithm (HGPA) partitions the hyper graph directly, by eliminating the
minimal number of hyper edges. It assumes that all hyper edges have the same weights.
Hyper Graphs Partitioning package HMETIS [KAKS99] is used for the same. In the Meta
CLustering Algorithm (MCLA), related hyperedges are grouped in metaclusters and then
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collapsed. It assigns each object to the collapsed hyperedge in which it participates most

strongly. METIS algorithm is used to get metaclusters.

Topchy et al. [TJP04] proposed a probabilistic model of consensus using a finite
mixture of multinomial distributions in a space of constructed features. A combined
clustering is found as a solution to the corresponding maximum likelihood problem using

the Expectation Maximization algorithm.

Hybrid Bipartite Graph Formulation (HBGF) proposed by Fern and Brodley [FBO4]
is also based on graph partitioning. They model the clusters and the objects in a bipartite
graph. There is an edge between an object node and a cluster node if the object belongs

to the cluster. METIS is then used for consensus generation.

Dudoit and Fridlyand [DF03] use relabeling and voting to ensemble partitions. Are-
labeling between two clusterings/partitions is done using the Hungarian algorithm. After

relabeling, voting is applied to determine cluster membership for each object.

Fred and Jain [FJO5] proposed to ensemble clustering results in a co-association
matrix. The associations between sample pairs are weighted by the number of times they
co-occur in a cluster. Consistent clusters are formed using a minimum spanning tree like
algorithm using the co-occurrence matrix. They use co-association values and apply a
hierarchical (single link) clustering to the co-association matrix. The idea of evidence

accumulation for combining the result of multiple clusterings is used.

Co-clustering and projective clustering are problems that are related to bicluster-
ing. Though researchers sometimes claim that co-clustering, projective clustering and
biclustering are all same but generally solutions for co-clustering do not allow clusters to
overlap on objects and features whereas solutions for projective clustering allows over-
lapping of features but not of objects. Wang et al. [WLDJ11] and Gullo et al. [GDTQ9]
have proposed ensemble techniques for these problems. Wang et al. presented an ensem-
ble solution for co-clustering wherein they extract block-constant biclusters generalizing

the grid-style partitions to allow different resolutions in different parts of the data matrix.
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A pair of biclusters may overlap on objects or on features but not on both at the same
time. Gullo et al. presented an ensemble solution for projective clustering wherein an
object may belong to more than one biclusters but the total sum of the membership is one
thereby meaning that if an object completely belongs to one bicluster it does not belong

to any other. They project the clusters on one dimension in a fuzzy way.

Biclustering is different from these problems/solutions wherein an object/feature
may have a total membership more than one and a bicluster is defined by more than one

feature. Also, bicluster may overlap both on objects and features simultaneously.

Review of HN algorithm

In a parallel work, Hanczar and Nadif [HN11] proposed the use of bagging to improve
the performance of biclustering schemes. HN generates schemes using bootstrapped data
and then combines the clusters into metaclusters using Jacquard Index as the similarity

measure. They then use voting to generate the consensus.

In another work, Hanczar and Nadif have used triclustering [HN12] to form bicluster
ensemble. They represent the collection of biclusters by a 3 dimensional binary matrix
with genes, conditions and all the biclusters on the three dimensions. A tricluster is
defined as a set of 1's from the 3 dimensional matrix. The aim of the algorithm is to
find all the triclusters from this matrix. The algorithm suffers from the anomaly that it
does not fare well when the input schemes contain true biclusters. Moreover it looks
at local minima whereas the global minima could be far off. They have given a graph
showing that the loss function is non-increasing. However, these values of loss function
are absolute rather than relative. Also, they discuss that absolute loss function may lead to
a condition wherein all feature or examples be removed, and proposes the use of relative
values instead. On the other hand, values of relative loss function may not necessarily be

non-increasing.
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3.4 Evaluating the Results

Different quality measures are used for different scenarios depending on the data and on
the availability of ground truth [GVSSO03] for traditional clustering. In case the ground
truth is known, statistical measures like Rand Index and Jacquard Index are used to ad-
judge the proximity of the output to the ground truth. These measures generally count the
pair of genes that behave similarly in the ground truth as well in the output i.e. they are
put in the same cluster by both or in different clusters by both. These measures cannot be
extended for biclustering solutions as a pair of genes may be put together in one bicluster
as well as be separated at the same time in two different biclusters. Measures used in
Pontes et al. [PGAR15] evaluate the quality of biclusters whereas in ensemble algorithms
we are interested in determining how close our final ensemble is to input biclustering so-
lution. We define a new measure wherein the result is aligned with the ground truth and

the similarity of the two is established using membership of the genes.

3.4.1 Statistical Validation of Biclustering Solutions : Synthetic Data
Set

In this section, we describe both types of evaluation metrics. We first define a statistical
measure Agreement Score (AS) that captures the overlapping nature of biclusters. Let
denote the biclustering solution that needs to be compared with the groune tr(ine
implanted biclusters). Align the biclusters ofand 7 ignoring the extra biclusters on
either side and calculate the ratio of number of agreements to the sum total of agreements
and disagreements for all pairwise aligned biclusters. Mathematically it can be written

as:

1 rs + brs
AS = . > ——
# of biclusters (BC, B e Atign(re.m) T + bps + Crs + dos
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where
Align(rg,n) = {(BC,, BC;) : BC,, BC; are aligned biclusters of mg & 7 resp.}

a,s IS the number of genes belonging to both the biclusigts and BC,

b,s is the number of genes belonging to neitheBaf, and BC,,

¢rs 1S the number of genes that belong to the bicluggér, but do not belong to the
biclusterBC, and,

d,.s 1s the number of genes that do not belong to the biclust€y. but belong to the
biclusterBC.

Thusa,, + b, denote the agreement between the two biclusterg,andd,., denote

the disagreement between them.

Agreement score aims at finding the similarity between the two biclustering schemes.
It takes into account gene agreement between aligned biclusters of the schemes. As a gene
may contribute more than once to the similarity measure, Agreement score(AS) is nor-
malized by dividing it by the number of biclusters. The value of AS thus lies between 0
and 1. The value 0 indicating that the two biclustering schemes do not agree at all and 1

indicating that the two biclusterings are same.

We use another measure called BCE (biclustering error) that takes both genes and
conditions into account to validate biclustering solutions. The total number of misclassi-
fied values (g,c pairs) in the aligned biclusters amounts to the biclustering error between
two biclustering solutions. Let denote the biclustering solution that needs to be com-
pared with the ground truth; (the implanted biclusters). Align the biclustersmofind

7 ignoring the extra biclusters on either side. BCE is calculated as follows

BCE = Z err(BC,, BCy)

(BC,,BCs)eAlign(rg,m)
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where

err(BC,, BCy) = |G| |Cy| + |Gs| |Cs| — 2|1G, NG| |C N Cy|
G,,G, are genes of BC, & BC respectively ,
C,, Cs are conditions of BC, & BC| respectively and

| X| denotes the cardinality of X.

More is the number of the genes and conditions that do not match with the classes in

which they ought to be, more is the error and less significant is the biclustering solution.

3.4.2 Biological Validation of Biclustering Solutions : Real Data Set

In the absence of ground truth, external measures are used for validation of biclustering
solutions. External validation methods like GO annotation term [LWOQ7], metabolic path-
ways [BIBO03], protein protein interaction network [PB@6] and patterns in promoter
regions [THC 99] are commonly used to assess the quality of biclusters. These methods
are based on the hypothesis that a group of genes that are related are responsible for some
biological function in a cell. We have used gene ontology terms and motif analysis to
validate our biclusters. Both these tools psealue to find the significance of the biclus-

ters. We start with the explanation pfvalue followed by description of the tools used

for validation of biclusters.

p-value

Using p-value we determine confidence in the result. It is done using hypothesis testing,
wherein we use a test statistics that indicates how strongly the data we observe supports
our decision. The-value was first formally introduced by Karl Pearson but its use in
statistics was popularised by Ronald Fisher.

The GO terms/motifs shared by the genes in the user’s list are compared to the back-

ground distribution of the annotation. It is the probability of seeirgg more genes from
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the input list ofn. genes annotated to a particular GO term/motif, given the proportion of
genes in the whole genome annotated to that GO term/mdiifasit of G. Specifically,
hyper geometric distribution is used to calculate the probability of observing atdeast
more genes from a functional category from an input gene list ofisigen the back-
ground database consists@fgenes out of whichF' belong to the functional category.

p-value is given by

(%

2:: () (n)—j )

This is same as calculating the chance of getting at leastcesses and can also be

represented as

E O

~ () G
. (©

.

Itis clear that smaller the-value, more significant is the association of the particular
GO term/motif with the group of genes (i.e. it is less likely that the observed annotation of
the particular GO term/maotif to a group of genes occurs by chance). There may be several
GO terms/motifs with differenp-values associated with an input set of genes belonging

to a bicluster. The begtvalue for each category was used to compare the biclusters.

Gene Ontology terms analysis using DAVID Toolbox

There are three Gene Ontologies (GO) that form a common language for annotation of
genes of different organisms from yeast to human. They relate genes with different bi-
ological processes across different species. The three GO ontologies Bi@dgical
processwhich include biological functions to which a gene or a gene’s products con-
tribute; (i) Cellular component which includes complex sub-cellular structures, loca-
tions and macro-molecular complexes like RNA polymerases where the gene products

are active; (iiilMolecular function which defines the biochemical activities like carbo-
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hydrates binding and ATPase activity, of the gene products at molecular lev€lO A

term is annotated to a gene group that is responsible for a particular biological function.

m. DAVID: Functional Annot: % \Tata Photon - Yahoo E ST
&= C M [) davidabccnciferf.gov/summaryjsp Q| =

=2 Apps [ logo quiz Tata Photon - Yahoo! ' tomatol < tomato2 gaf tomato3 @ tomatod BN tomateS . tomatob »
+'|bc1 |ps=m:n v| a 4
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Figure 3.1: Snapshot of Functional Annotation tool of DAVID.

DAVID (Database for Annotation, Visualization and Integrated Discovery) is a free
online bioinformatics resource consisting of knowledge database and analytical tool that
helps in extracting biological relevance of a set of genes [HSL08]. The knowledge
database integrates major public bioinformatics resources. DAVID's knowledge base
collects and integrates diverse gene annotation categories, assigns a centralized internal
DAVID identifier to each of them in a non redundant manner. The wide range of bio-
logical annotation coverage in the DAVID knowledge base enables a user’s gene ID to
be mapped across the entire database thus providing a broad coverage of gene associated

annotation. Also, if a significant portion-(20%) of input gene IDs fail to be mapped to
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an internal DAVID ID, another DAVID tool, the Gene ID conversion tool starts up to help
in the mapping of such IDs.

The Functional Annotation tool of DAVID as shown in Figure 3.1 is used for en-
richment analysis of the gene terms annotated for the input gene set. The basic principle
behind the enrichment analysis is that if a biological process is active/abnormal then the
co-functioning genes have a higher chance of being selected as a relevant group. To de-
cide about the degree of enrichment, a certain background has to be setup for comparison.
As per Huang et al. [HSLO08] larger backgrounds e.g. the total genes in the genome as a
background tends to give more significamtalues as compared to narrowed down set of

genes as background. DAVID has an automatic procedure to determine the background

r |
& DAVID: Database for Annotation, Visualization, and Integrated Discovery (Laboratory of Immunopathogenesis and Bioinfo...[ == &J

[3 david.abcencifcrf.gov/chartReportjsp?annot=25 Q

b & { DAVID Bioinformatics Resources 6.7
& DATARASE National Institute of Allergy and Infectious Diseases (NIAID), NIH

o]
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Help and Manual
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Current Background: Homo sapiens
482 DAVID IDs
B Options
[REI'IJH Using Dptians] [C:E.ate Sublist]
293 chart records Bl Download File
CONETTEE T 1] core count 5 s s
GOTERM_BP_FAT regulation of c=ll proliferation RT o 56 13.7 4.7E-12 1.3E-B
GOTERM_EP_FAT positive reg BT mm 41 B5 10E-5 14E-6
GOTERM_BP_FAT RT o 54
GOTERM_BP_FAT cell cycle proce: BT mm 46
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Figure 3.2: Snapshot of Functional Annotation chart.

as the global set of genes in the genome on the basis of the user’s uploaded gene list. Thus
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normally a user does not have to setup a population background by itself. Uploading the
gene lists of the bicluster is the first step of analysis. DAVID maps a number of genes in
the uploaded list to the associated biological annotatioyeae ontology terms It then
statistically examines the enrichment of gene members for each of the annotation terms by
comparing the outcome to the reference background ysuajues. Lower is the-value,

more statistically significant is the bicluster. Annotation terms below a certain threshold

are reported as shown in Figure 3.2.

Motif analysis using RSA Toolbox

A set of genes showing similar behavior indicates that they are active or expressed to-
gether. A gene becomes active whetranscription factor (protein that accounts for

gene regulation) binds to Eanscription Factor Binding Site (TFBS) or motif in the
promoter region of the gene. Thus the genes responsible for one biological activity and
hence belonging to a bicluster are expected to have shared elements/patterns/motifs. In
order to further validate our biclusters we performed motif analysis of the genes of the
biclusters usindqRegulatory Sequence Analysis Toolbox (RSAT)Given a set of input
genes, RSAT provides motifs, if any, in their regulatory region along with ghealues.

RSAT consists of many modular tools for sequence retrieval and motif discovery. These

Retrieve Motif
" Sequence Discovery [
Genes of Tool (RST) Gene Tool (MDT) | Common
Bicluster Sequences Motifs

Figure 3.3: Motif analysis using RSAT.

tools can either be accessed separately or be connected in a pipeline. Two of these tools

areRetrieve Sequence Tool (RSTandMotif Discovery Tool (MDT) . Figure 3.3 sum-
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marizes the working of RSAT.
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Figure 3.4: Snapshot of RSAT
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Figure 3.5: Snapshot of motif discovery tool of RSAT.
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A set of genes along with the name of the organism is provided as an input to RST
as shown in Figure 3.4. RST provides the sequences of the input genes as output which is
then fed to MDT to extract the motifs. The output of MDT includes the motifs and their
corresponding-values as shown in Figure 3.5. The value gives the statistical significance
of the motif detected. It is the expected number of times a similarity would be observed

by chance in a target database of random motifs.

3.5 Data Sets

We considered synthetic data sets used by Prelic et al. in BB Details of the data

sets are given in Table 3.1.

Code-Data Set Size(N*d) | # implanted biclusters]

DS1- Prelic(without noise) 110*110 11(overlapping)

DS2- Prelic(with noise) 100*50 10(non overlapping)

Table 3.1: Synthetic Data Sets.

The heat map of both the data sets of Prelic are shown in Figures 3.6 and 3.7.

We also worked on four real data sets for our study including a eukaryote, a plant
and homosapiens. Table 3.2 gives the details of the real data sets.

Saccharomyces Cerevisi@éeast) is a safe, easy to grow, short generation time or-
ganism [Hun93]. As yeasts are eukaryotes and are biochemically similar to humans, they
are quite popular with biologists for study purposes. Yeast data sets examines gene ex-
pression behaviour during various stress conditions. Expression profiles were normalized
by subtracting the mean of each profile and dividing it by the standard deviation across
the time points.

Arabidopsis Thalianas a common weed which undergoes the same processes of

growth, development, flowering etc. as most of the higher plants and yet has a small
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Figure 3.6: Heat map of overlapping data set of prelic-DS1.

Figure 3.7: Heat map of non overlapping data set of prelic-DS2.
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genome. It produces a large number of seeds and grows to a mature plant in only about six

weeks. The microarray is designed to examine the expression profile of identified small

coding genes and all annotated genes in various organs and various stress condition.

Diffuse Large B-cell Lymphontata set contains the gene expression profiles of the

lymphomas of patients after chemotherapy [RV02].

Human Breast Canceatata set aims at predictive gene signature for the outcome of

a breast cancer therapy [vtVDvd¥2]. The data set contains gene expression profiles of

the premalignant, preinvasive, and invasive stages of human breast cancer.

1

Organism Genes(V) | Conditions() source
(Short Name)
Saccharomyces Cerevisiae
(Yeast) 2993 173 www.tik.ee.ethz.ch/sop/bicat
Arabidopsis Thaliana
(A. Thaliana) 734 69 www.tik.ee.ethz.ch/sop/bicat
Diffuse Large-B-cell Lymphoma
(DLBCL) 661 180 www.bioinf.jku.at/software/fabig
Human Breast Cancer
(Breast Cancer) 1213 97 www.bioinf.jku.at/software/fabia

1

Table 3.2: Real Data Sets.
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Chapter 4

BiETopti - Biclustering Ensemble

Technique using Optimization

The chapter presents our first approach towards ensembling biclustering solutions named
BIiETopti. Optimization technique has been used for the ensembling purpose. The algo-
rithm starts by generating a number of schemes using a biclustering algorithm. Different
schemes may assign different labels to similar biclusters. Thus the schemes are first
aligned so that similar biclusters in different schemes have the same label. A pool of
global labels is formed and a local label of an individual scheme is mapped to a global
label. The consensus is then obtained by minimizing the dissimilarity between the ob-
tained biclusters and the aligned input biclusters. Manhattan distance is used to capture
the dissimilarity. The objective function consists of two terms: one that minimizes the dis-
similarity amongst genes and the other to minimize the dissimilarity amongst conditions.
The sum thus minimizes the combined dissimilarity over genes and conditions.
Experiments were performed both on synthetic data sets and real data sets to show
the efficiency of our algorithm. The biclusters produced by our algorithm were found to
be better than the best of the input schemes. We also compared the biclusters produced by

our algorithm with those produced by Hanczar and Nadif (HN) [HN11] on their synthetic
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data set. It was found thati £'T°opti not only outperformed HN in terms of quality but it
also takes lesser time. Details of our approach are presented in Section 4.1. Experimental

results are discussed in Section 4.2.

4.1 BIiETopti

The algorithm works in three phases. Phase | deals with the generation of input schemes.
Schemes are generated by running a biclustering algorithm several times with different
initializations. In phase Il, biclusters of two schemes are relabeled and aligned so that
similar biclusters in two schemes have the same label. A statistical measure was defined
by Krumpleman and Ghosh [KGO07] to capture similarity between clusters. The measure
takes into account the non-disjointness of clusters but does so only amongst the genes.
To see the behaviour of this method on biclusters, it was applied on two biclustering so-
lutions as shown in Table 4.1. We observe that bicluster Al is aligned with bicluster B1
and bicluster A2 is aligned with the bicluster B2 considering only the genes in common.
This alignment is shown in Table 4.2(a). However similarity between biclusters should
be computed by considering gene condition pairs. Thus, this measure is modified for our
algorithm to capture the overlap of genes as well as conditions. The modified measure
aligns Al with B2 and A2 with B1 as shown in Table 4.2(b). Hungarian method is then
used to relabel the biclusters so as to align similar biclusters with each other. The con-
sensus is then generated using optimization in phase-Ill. Architecture of the approach is

given in Figure 4.1.

Review of Hungarian Algorithm

Hungarian method is a combinatorial optimization algorithm that solves assignment prob-
lem. Assume that there are N workers to whom N jobs are to be assigned. For each pair

(worker, job) we know the salary that is to be paid to the worker to perform the job.
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BC# | Group of | Biclustering| Biclustering
Solutionl Solution2
1 genes 12345 123
conditions 123 45
Al Bl
2 genes 456 45
conditions 45 12
A2 B2

Table 4.1: Sample Biclustering Solutions

Biclustering| Biclustering
Solutionl | Solution2
12345 123

123 45
Al Bl
456 45
45 12
A2 B2

Table 4.2: Alignment using a) Krumpleman and Ghosh method. b) Modified form of

Krumpleman and Ghosh method.
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Figure 4.1: Architecture of BIETopti.
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The goal is to find the lowest cost solution of getting all the jobs done by assigning each
worker to exactly one job. The Hungarian algorithm does this by solving a minimum

weight bipartite matching.

4.1.1 Some Notations

In this section, some notations used in the chapter are presented.

Definition 4.1.1 (Biclustering Solution/Input Scheme)A biclustering solutionr de-

fined over expression matri is a triplet (£, X, Y'):
1. kis the number of biclusterg] ... £} denote the set of bicluster labels.

2. X : G x{l...k} — {0,1} is a function whereX (g, [) represents whether a gene
g belongs to the bicluster labeléd

3.Y:Cx{l...k} —{0,1}is afunction wher& (c, [) represents whether a condi-

tion ¢ belongs to the bicluster labeléd

For the ease of presentation we will usg to denoteX(g,!) andy,. to denote
Y (c,1).

Definition 4.1.2 (Collection of Input Schemes)II is a collection ofH input schemes,

I = {m ... 7y}, Where each of; = (k;, X*,Y") is a biclustering solution/ input scheme.

Since the biclusters may overlap both on genes and conditions, a gene (/ condition) may
be assigned more than one label. Also, there may be a gene (/ condition) which does not
belong to any bicluster, such a gene (/ condition) is assigned a special ldthehce, an

extra bicluster with label is added in each input scheme. Note that the number of the
biclusters increase blyin each scheme. Thus without loss of generality, we can assume

that in each scheme, each gene and each condition belongs to at least one bicluster.

45



Definition 4.1.3 (Global Label Set)is a setL of labels{0, ..., (327, (k; + 1) — 1)}.

In general, different biclustering schemes may contain different number of biclusters.
However, we have considered schemes with equal number of biclusteks ek V i.
The problem of bicluster ensemble is to derive a consensus that combingshiictus-

tering solutions and delivers a biclustering solutios: (k, X,Y").

4.1.2 Phase-l: Scheme Generation

Algorithms yielding maximum information about the data are preferred. Aggregation of
similar schemes is of no use. Schemes that are to be ensembled must be different as it adds
to diversity which is essential for ensembling. To ensure diversity, different schemes may
be produced by applying different biclustering algorithms on the same data set. Applying
same biclustering algorithm on bootstrapped data also create different schemes. Schemes
may be obtained by applying same algorithm on the same data by varying the threshold

parameters/initialization.

Figure 4.2: Heat Map of Toy Data.

We generate schemes without bootstrapping wherein a biclustering algorithm is ap-
plied on the data set several times, each time changing the parameters/initialization. The

schemes generated are represented in the form as described in Section 4.1.1.
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The algorithm is explained with the help of a toy data contairingenes and

conditions. Figure 4.2 shows the heat map of the toy data and the two possible biclustering

schemes of the same are shown in Table 4.3.

BC# | Group of | Biclustering| Biclustering
Solutionl Solution2
1 genes 1234 234
conditions 1234 234
2 genes 346 123
conditions| 3456 123
3 genes 34 456
conditions 34 456

Table 4.3: Two Biclustering schemes of Toy Data.

4.1.3 Phase Il: Label Correspondence

In the absence of labeled data, different schemes assign different labels to genes and
conditions. Therefore, we need to establish correspondence between the labels so as
to align similar biclusters of different input schemes. One of the schemes is used as a
reference and biclusters of other schemes are relabeled so that they are aligned with the
similar biclusters of the reference scheme. Biclusters belonging to different solutions
having maximum overlap with each other need to be aligned and given the same label.
This was the intuition underlying the probability based alignment function proposed by
Krumpleman and Ghosh [KGO07] for clustering solutions. We start with review of the
alignment function and suggest how it can be modified to suit the need of biclustering

solutions.
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Review of Krumpleman and Ghosh’s (KG) alignment function

Krumpleman and Ghosh are the first ones to define a statistical measure to capture the
overlap between two clusters, wherein a clusterer may produce non-disjoint clusterings, to
establish cluster correspondence before applying majority voting to design the consensus
function for the ensemble. The measure they used is able to capture the overlap for genes.
The function defined by them measures the probability of an event occurring by chance.
It is defined as the total probability of seeing the observed overlap(s) or greater between
the two clusters. This value essentially measures the likelihood of the observed overlap
being a random event, hence a small value indicates a small probability of seeing the

observation at random and show higher similarity.

t=min(d1,d2) (N) (dl) (N—dl)

P(t) where P(s) = 4/ s/ d2=s
1

dl) \d2

Heredl, d2 are number of objects in clustef§, C; respectively.s is number of

objects overlapping between andC, andN is total number of objects in data set.

The above formula calculates the number of ways of choosing the observed overlap
s out of the total number of ways in which two clusters of sidzésandd2 respectively
can be formed. The denominator represents the number of ways of choosing two clusters
of sizesd1 andd2 respectively and the numerator finds the number of ways of choosing
the observed overlag It is actually the product of three terms as explained here: Count
number of ways in whiclki1 1’s can be selected froV, followed by the number of ways
to choose the overlapping points from thesél 1’s and last term counts the number of

ways to place remaining's in C; such that they do not overlap withs in Cs.
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(gene,condition)

Biclustering Schemel

Biclustering Scheme2

(gene,condition)

Biclustering Schemel

Biclustering Scheme2

pair Labels Labels pair Labels Labels
BC1 BC2 BC3 BC1 BC2 BC3 BC1 BC2 BC3 BC1 BC2 BC3

11) 1 0 0 0 1 0 4,1) 1 0 0 0 0 0
1,2 1 0 0 0 1 0 4,2 1 0 0 1 0 0
(1,3) 1 0 0 0 1 0 (4,3) 1 1 1 1 0 0
(1,4) 1 0 0 0 0 0 (4,4) 1 1 1 1 0 1
(1,5) 0 0 0 0 0 0 (4,5) 0 1 0 0 0 1
(1,6) 0 0 0 0 0 0 (4,6) 0 1 0 0 0 1
2,1) 1 0 0 0 1 0 (5,1) 0 0 0 0 0 0
(2,2 1 0 0 1 1 0 (5,2) 0 0 0 0 0 0
23 1 0 0 1 1 0 (5.3) 0 0 0 0 0 0
(2,4) 1 0 0 1 0 0 (5,4) 0 0 0 0 0 1
(2,5) 0 0 0 0 0 0 (5,5) 0 0 0 0 0 1
(2,6) 0 0 0 0 0 0 (5,6) 0 0 0 0 0 1
(3.1) 1 0 0 0 1 0 (6,1) 0 0 0 0 0 0
3,2) 1 0 0 1 1 0 (6,2) 0 0 0 0 0 0
(3.3) 1 1 1 1 1 0 (6,3) 0 1 0 0 0 0
(3.4) 1 1 1 1 0 0 (6,4) 0 1 0 0 0 1
(3,5) 0 1 0 0 0 0 (6,5) 0 1 0 0 0 1
(3,6) 0 1 0 0 0 0 (6,6) 0 1 0 0 0 1

Table 4.4: Membership Matrices.
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Modifying the KG’s alignment function for biclusters

Borrowing the notation from them, we extended their definition to take into account the
joint overlapping of biclusters on genes and conditions. B€t and BC'; be the biclus-
ters ofr,.., andm; respectively. We define Bicluster Similarity Index (BSI) to compute the
similarity betweenBC; and BC;. Let N' be the total number dfy, c) pairs. Letd1 and
d2 be the number ofg, c) pairs inBC; and BC; respectively, i.edl = (3_, 4i) (>, Yei)
andd2 = (3, 74;)(>_.ve;). Lets be the number ofg, c) pairs common betweeBC;
andBCj. The probability of the observed overlap beint then given by
CD D) (O

() () (%)

The above expression is the hyper-geometric distribution evaluatedatal prob-

Pij(s)

ability of seeing at least overlapping(g, c¢) pairs is then

min(dl,d2)

BSLy= Y Pyt

t=s

This can be obtained by taking a scalar product of the corresponding columns (third
dimension) of the binary membership matrices of the two schemes. Binary membership
matrix M is defined as a three dimensional matrix with genes, conditions and labels on the
three dimensions. Hence each membership matrix is of/¢izé - k for an input scheme
with £ biclusters. The two binary membership matrix for the two schemes of the toy
example are shown in Table 4.4. Using the notation of a 3D matrjx,denotes whether
the genegy; and the conditiom; belong to the-" bicluster or not. Lef\Z,., and M, be two
binary membership matrices for the input schemegandn; (I = 1... H) respectively.

The objective is to align the third dimension &f; with that of M., such that they have
maximum match. Hamming distance appears to be the most reasonable choice. However,
it does not account for the different densities of 1's in different columns.

Clearly, higher the overlap, lower is the value of BSI. We compute the pairwise

BS1;; for all pairs of biclusters with one bicluster taken fram ; and the other from;.

50



The calculation of BSI for the first bicluster of the two schemes of toy data is shown
here: (Refer to BC1 column of both the schemes in Table 4.4.)

According to the formula
min(dl,d2)
BSIy= Y Pyt

t=s

Substituting the valuesV'=36, d1 =16, d2=9, s=9

by — WO O @) 0
1, ! ! ! . . 36 *

(271) (2[2) (52) ( 9 )
We then define a bipartite graph with biclustersmf; as vertices on one side and

biclusters ofm; as vertices on other sideBSI;; is the weight of the edge betwegfh

bicluster ofr,. and;*" bicluster ofr;. This is shown in Figure 4.3.

Figure 4.3: BSI between schemes for the toy data. Circles correspond to biclusters in a
scheme.

Hungarian method is used to compute minimum weight bipartite matching to obtain
the new labelg X'Y") for the biclusters ofr;. This is illustrated in Figure 4.4. Step by

step procedure for same is given in Algorithm 1.
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O _ ® ©
® O > @0 O

Figure 4.4: Labels before and after applying Hungarian algorithm.

Input: (X1Y1) (X2Y?2),... (XHYH): old labels ofH input schemes
Output: (XYY, (X?Y?),... (X?'YH') : new labels offf input schemes
/* without loss of generality assume Tref 1S 1. */
for {=2to H do

fori=1to kdo

for j=1to kdo
calculateBST;; between thé' and thej™" biclusters ofr,.,; andr;

biclustering schemes respectively;

end

end
use Hungarian algorithm witB.S7;; as the edge weights and relabel the

biclusters ofr;;

end

Algorithm 1: Label Correspondence.
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4.1.4 Phase lll: Generating Consensus

In this section we present our main contribution. We formulate the problem of generating
a consensus from the input schemes as an optimization problem. We start by mapping the
local labels to global labels as described below:

Consider the” bicluster ini*" input scheme. The value ofanges between 0 arid

whereas takes values fronmh to H. The bicluster gets the global labeivhereh satisfies

i =|h/(k+1)] +1, r=hmod (k+1). Figure 4.5 shows the mapping of local labels

i=1 i=2|

to global labels.

0.0 - 0,4-
1,1 O 1,5@
2,2 . 2,6.
@ @

Figure 4.5: Local labels mapped to global labels (pairg): (local labelr, global label
h)).

The gene-wise representation of the collection of input schemes is then given by the

following N x 1 vectors
5h =< 5glh7 (ngh, R 69Nh > where 5gjh = SL’;J,T
and the condition-wise representation is given by the following1lvectors

fin =< fherhs fleshs - - - flegn > Where fie;n = Yo,

Theé andy for the toy data are given in Tables 4.5 and 4.6 respectively. We next
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h — 0 1 2 3 4 5 6 7
Genes |r=0|r=1|r=2|r=3|r=0|r=1|r=2|r=3
1 0 1 0 0 0 0 1 0
2 0 1 0 0 0 1 1 0
3 0 1 1 1 0 1 1 0
4 0 1 1 1 0 1 0 1
5 1 0 0 0 0 0 1
6 0 0 1 0 0 0 0 1

Table 4.5: Bicluster Collection Representatidfor the example is local label, s is
global label).

Yt Yy?
h — 0 1 2 3 4 5 6 7
Conditiong | r=0|r=1|r=2|r=3|lr=0|r=1|r=2|r=3
1 0 1 0 0 0 0 1 0
2 0 1 0 0 0 1 1 0
3 0 1 1 1 0 1 1 0
4 0 1 1 1 0 1 0 1
5 0 0 1 0 0 0 0 1
6 0 0 1 0 0 0 0 1

Table 4.6: Bicluster Collection Representatjofor the example.
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present the formulation of our problem. Le}. be an indicator variable that denotes
whether geng; gets the label or not. Similarly, lety,.. be an indicator variable that
denotes whether conditiongets the label or not. The objective is to assign labels to
genes and conditions so as to minimize the dissimilarity of the obtained biclusters from
the corresponding aligned biclusters. The objective function consists of two terms, one
for dissimilarity over genes and the other to capture the dissimilarity over conditions. We

obtain the new labeling,, andy., so as to
Minimize

k k
Zr:O Zh:hmod(kz-{—l):r gg”lm |x97’ - 59h|+ Zr:O Zh:hmod(k-{—l):r sz:cl |y07" - IuCh|

subject to
N T >1 YOS <k (1)
S Y =1 VO<r <k (2)
S 1. >1 Yged (3)
(4)

21::1 Yoo > 1 YVee C 4

Note thatz,, — J,,| contributedl to the dissimilarity over genesii,, is not in agreement
with o4, i.e. (if z . =1 andd,, =0) or (if =, =0 andd,, =1); first condition corresponds
to the case when gets the labet in our solution buty does not get label in one of the
input schemes. The second condition corresponds to the casepidant assigned the
label » by our solution but it got labet by one of the input schemes. And,, — d,|
contributed) to the dissimilarity over genesif,, is in agreement witl,, i.e. if bothz,,
andé,, are 1 or 0. Thus for every geme >, |z, — d,| counts the number of schemes
with which our solution does notagree grand > >, |z, — 41| represents the total

disagreement of our solution with the input schemes over all genes.

Similarly |y., — x| contributes! to the dissimilarity over conditions if,, is not in

agreement withu,, i.e. (if y.. =1 andu,, =0) or (if y., =0 andu., =1). First condition
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corresponds to the case whegets the label in our solution butc does not get label
r in one of the input schemes. The second condition corresponds to the case ishen
not assigned the labelby our solution but it got labet by one of the input schemes.
|yer — 1en| coONtributes) to the dissimilarity over conditions i, is in agreement with
Hen 1.€. if bothy,,. andp,., are 1 or 0. For every condition) ), |y.. — pen| counts the
number of schemes which agree with our solutiorand ) ©. >, |y, — ien| represents
the total agreement of our solution with the input schemes over all conditions.

The constraints (1) and (2) make sure that each bicluster has atllgaste and
1 condition. The constraints (3) and (4) make sure that each gene and each condition
belongs to at least one bicluster. The constraints are linear whereas the objective function
contains absolute terms (modulus) which can be replaced with squares of the terms and
solved as a quadratic program. Though in general the problem is hard but we solve it
as a relaxed LP as our coefficient matrix is totally unimodular. A matrix A is totally

unimodular if every square submatrix has determinant O, 1, or -1.

4.2 Experimental Results

In this section, we present experimental evaluation of our approach. We first compare the
performance ofBi ETopti with HN on dataset used by them and show tBaf;T opti
outperforms HN both in terms of time and quality. We then present the resubtgf opti

on synthetic data set of Prelic and real data sets.

4.2.1 Methodology

To compare the performance of our approach with HN, we used their code (provided to
us by the authors on our request) and data set (DS0) used by them. D3 lyenes
and100 conditions with two overlapping biclusters implanted in it. The implementation

of HN code is in R environment [R C12]. Our approadh,E'Topti is implemented in
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MATLAB version 7.10 (R2010a) on Intel Core i5-2430M CPU @2.40 Ghz wilBB
RAM using Windows 7 Home Basic Operating System and for the optimization part,
LINGO [LINO6] tool was used.

4.2.2 Comparison with HN

First we compare the performance Bi E'Topti with that of HN on bootstrapped data.

CC algorithm was used to generate the input schemes on bootstrapped samples of data set
(DSO0). The ensemble formed is compared with the ‘Single’ to adjudge the quality of the
ensemble where ‘Single’ is the scheme obtained when algorithm CC is run on DSO.

500
300

Biclustering Error Time(Sec.)
450 - 250

Hsingle

EHN

200 ; e
400 - m BiETopti{with

bootstrapping)
150
350 1
100
300 1 50

0
250 -
CC 50 schemes CC 200 schemes CC 50 schemes CC 200 schemes

Figure 4.6: Single versus (HN and BiETopti) on DSO using CC.

Two setups, one with0 bootstrapped samples of the data set and other 20ith
samples of the data set (as defined in their paper), were used for the purpose. Figure 4.6
compares the biclustering error (misclassifiede) pairs) of the biclusters generated by
CC (single) and that of ensemble 6% ETopti and ensemble of HN. The time taken
by the two algorithms is also shown in the figure. The figure showsRBh&t opti not
only improves upon the biclustering error over the ‘Single’ but it also outperforms HN.

In case of50 samples, the performance 8% E'Topti is significantly better than that of
HN. Though the improvement in the quality of biclusters, in cas@Qof samples, is

marginal, Bi ETopti beats HN in terms of time here significantly. Thu&,FT opti not
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only provides better biclusters than HN, it also saves hugely on time as compared to HN.

Next, we compare the performance of the two approaches when input schemes are
generated by bootstrapped samples against those that are generated on non-bootstrapped
data. Diversity in input schemes is obtained naturally when CC is run on bootstrapped
data. But on non bootstrapped data, running CC with different initial values does not
provide much heterogeneity in the input schemes. Thus xMotif and ISA were used for the
purpose instead of CC. ISA was integrated with their code using ISA2 package [BIB03,
CKB10].

Two sets of experiments were performed, one with xMotif and the other with ISA.

In each set following experiments were performed:
¢ HN was executed on bootstrapped samples.
e BiETopti was executed on bootstrapped samples.

e BiETopti was executed on non bootstrapped samples also.

Figure 4.7 shows the biclustering error for all the three experiments on both the sets.

1765 6000 -

5500 -
1760
HHN

5000 -+
1755 4 H BiETopti{with
4500 - bootstrapping)

BiETopti(without
4000 -+ bootstrapping)

1750

1745 - 3500 -

3000 -
*M otif 15A

1740 -~

Figure 4.7: Biclustering error of HN and BiETopti (bootstrapped and non bootstrapped)
for 2 setups using ISA and xMotif.

Following inferences can be drawn from the figure :
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e BiETopti on bootstrapped as well as non bootstrapped data outperforms HN espe-

cially with I1SA.

e BiETopti performs better on non bootstrapped data than on bootstrapped data.
Prelic et al. [PBZ 06] in their comparative study of different biclustering methods for
gene expression have shown that ISA performs better than other biclustering algorithms.
They focused on meaningfulness of the biclusters produced by different algorithms. They
wanted to see if any algorithm had an edge over the other. According to them there was
significant difference among these algorithms so far as performance is concerned. They
show that ISA is capable of providing functionally enriched biclusters that are biologically
significant. Multiple biclusters of both constant and coherently increasing values can be
found using ISA. On the other hand, both CC and xMotif algorithms find large biclusters
with constant expression levels and therefore not necessarily contain interesting patterns,

e.g. in terms of co-regulation. The performance of CC and xMotif is significantly lower
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Figure 4.8: Comparing the performance of ISA and xMotif.

than that for the other biclustering methods. This was experimentally endorsed by our
experiments also.
We next compare the performance®fET opti and HN w.r.t. xMotif and ISA in

Figure 4.8. As the range of values of biclustering errors in the two cases is significantly
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different, improvement percentage over ‘Single’ is used as a parameter to compare the
performance. It was observed that performanc8ai T opti as well as HN with ISA is
better as compared to that with xMotif in all the three experiments.

Thus here on, we focus on ensembles of schemes produced using ISA on non boot-

strap data.

4.2.3 Results on Synthetic Data Sets

Having gained confidence in our approach on the data sets used by HN, we performed
experiments on the benchmark data sets (DS1 and DS2) of Prelic et. al. using ISA as the
biclustering algorithm. DS1 and DS2 are two distinct data sets: one having overlapping
biclusters but no noise and the other having noise added to the data with non overlapping
biclusters. Input schemes were generated by running ISA on the expressian tlaies,

each time withl 00 gene seed vectors. Genes and conditions not assigned to any bicluster
by any of the input schemes were assigned a dummy label 0. This was done to ensure
the feasibility of the input.Bi E'Topti was then executed to generate the ensemble. The
whole procedure is repeated times and the results are averaged over the runs.

Two sets of experiments were conducted on each data set. In the first set, the thresh-
olds ¢,, t.) were fixed and the schemes were generated by running ISA with different
random gene seed. In the second set of experimgmtas varied keeping both the ran-
dom gene seed artdfixed. The value of, was varied fronj—2.4, +2.0] in steps 00.2.
It was observed that fay, values ranging fronf0.6, 1.6] schemes with biclusters identical
to the implanted biclusters were obtained whereas schemes obtairgd/éoying from
[—2.4, —0.8] biclusters consisted essentially of all the genes and all the biclusters eventu-
ally reduced to a single bicluster after preprocessing. Ensembling such biclusters was of
no help, so we focused our study gyvarying from[—0.6, 0.4] and[1.8, 2.0].

We compared the performance of the algorithm with the best of the input schemes

using biclustering error (BCE) and agreement score (AS). The best was obtained from the
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400 schemes (20 runs of 20 schemes each).

Table 4.7 - 4.8 present the results on data set (DS1) for the first set of experiments
(of varying random gene seed and having fixed,.) using both evaluation criteria i.e.
BCE and AS. The tables show that our approach improves upon the best of the input
schemes both in terms of BCE and AS.

SchemesBest | BiETopti
tg,te |
-0.50, 2 3402| 2540
-0.40, 2 3830| 3002
-0.35, 2 3618 2652
1,1 | 5218 3580
0,1 | 5860| 3768

Table 4.7: Best of input schemes vs BiETopti on DS1 for the first set of experiments using
BCE.

SchemesBest | BIETopti
tgite |
-0.50,2 0.82| 0.82
-0.40,2 0.77 0.79
-0.35,2 0.90 0.91
1,1 0.69 0.70
0,1 | 054 0.56

Table 4.8: Best of input schemes vs BiETopti on DS1 for the first set of experiments using
AS.

The second experiment was performed for varying valueg,pfif this experiment
also, Bi E'Topti provides better biclusters than best of the input schemes. The results are

displayed in Table 4.9.
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Evaluation Criteria| Best | BIETopti
BCE 3180 2752
AS 0.81 0.82

Table 4.9: Best of input schemes vs BiETopti on DS1 for the second set of experiment.

Effect of noise

Noisy data set (DS2) was used to study the impact of noise on the performabBce Bopti.

Both the experiments were repeated on (DS2).

SchemesBest | BIETopti
tg,te |
90,1 | 2865| 2431
1,.5 | 3012 2650
-.35,2 | 4187 3256

Table 4.10: Effect of noise on BiETopti (data set DS2) for the first set of experiments
using BCE.

Table 4.10 shows the results for the first set of experiments using BCE as the evalu-
ation method. Table 4.11 shows the Agreement Score (AS) of the results on DS2 for the

first set of experiments.

SchemesBest | BiIETopti
tg,te |

90,1 | 0.87 0.88
1,.5 | 0.77 0.78
-35,2| 050, 051

Table 4.11: Effect of noise on BiETopti (data set DS2) for the first set of experiments
using AS.
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The results for the second set of experiment are shown in the Table 4.12 using both
the evaluation methods. The tables show tBak'Topti was able to improve the per-

formance of the best of input schemes even in presence of noise using any of the two

evaluation measures.

Evaluation Criteria| Best | BIETopti
BCE 2588 | 2312
AS 0.92 0.92

Table 4.12: Effect of noise on BiETopti (data set DS2) for the second set of experiment.

Effect of number of schemes to be ensembled

To study the effect of number of schemes on the ensemble, a large number of schemes
were generated by varying,(t.). t, was varied fron.1 to 1.0 in step of0.1. Similarly

t. was varied from.1 to 1.0 in step of.1 to obtain100 schemes.

#schemes | BCE of | Improvement over the Best| Time

ensembled| ensemble

10 2928 179 151
20 2900 199 30
50 2889 100 40.1
100 2867 70 75

Table 4.13; Effect of number of schemes.

Results were taken by ensembling varying number of schemes out of these
schemes4 sets of experiments were performed With=' T opti by picking all the schemes
(100), half of the scheme$(), one fifth of the scheme&() and one tenth of the schemes

(10). Table 4.13 shows the biclustering error and the time taken for these experiments.
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Figure 4.9 shows the performance Bf E'Topti with the varying number of input
schemes. In all the cases the quality of the biclusters improves upon the best of the input
schemes. It was observed that the improvement in performance increases when the num-
ber of schemes are increased ug@doeyond which the improvement starts decreasing as

shown in the figure.
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Figure 4.9: Improvement of biclustering error and time comparison to show effect of
number of schemes.

At the same time, increasing the number of schemes befomktreases the time

substantially. Thus, for the rest of the experiments we fixed number of schemegto be

Effect of changing the reference scheme

We also studied the impact of changing the reference scheme on the performance. It was
observed that there was no significant change in the accuracy of the biclusters on changing

the reference scheme.

4.2.4 Results on Real Data Sets

Experimental studies were performed on the data sets of Saccharomyces Cerevisiae, Ara-
bidopsis Thaliana, DLBCL, and Human Breast Cancer. We generated input schemes by
running ISA, each time with hundred different gene seed vectors. Sizes of the biclusters

were kept to be comparable to eliminate the effect of size of biclusters gn\hkies.
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The biclusters produced byi E'Topti were evaluated using DAVID and RSAT tool.

Table 4.14 shows the biclusters Bi T opti along with their aligned input biclus-
ters for all the data sets. The tables show tHeg p-values of GO terms of top0
biclusters produced b¥gi ETopti. To compare with the input schemesiog p-value of
the besB3 of the aligned biclusters is displayed. It was observed that the quality of the
biclusters obtained was better than most of the input biclusters.

The genes of a bicluster are responsible for one biological activity and are expected
to have common patterns/motifs. So to further biologically validate our biclusters, we
searched for common patterns (motifs) from the promoter regions of the genes belonging
to a bicluster. Table 4.15 summarizes the hesalue for the motif extracted from the
gene sequences of the genes belonging to biclusters extractBdH¥opt: on various
data sets. Again the log-values indicate biologically significant biclusters. The table
shows the motif analysis of top biclusters Bi E'Topti along with their aligned input
biclusters. It is clearly seen that the biclusters obtained@hy T opti were biologically
more significant than most of the input biclusters using motifs also. Promoter regions of
the genes of most of the biclusters were found to have statistically significant common

motif patterns.

Comparison of BiETopti with existing biclustering algorithms

Figure 4.10 shows the comparison of the biclusters produce®d#yl opti with the
biclusters produced by existing biclustering algorithms like order-preserving sub ma-
trix (OPSM) [BDCKYO03], Cheng and Church (CC) [CC00], BIMAX [PBD6] and
ISA [BIBO3].

For Yeast and A. Thaliana the biclusters for all the biclustering algorithms were
taken from the BICAT site. For DLBCL and Breast Cancer, biclusters were generated
by executing these algorithms in BICAT tool. Figure shows that none of the existing

algorithms is said to be a clear winner in all the organisms. CC performs best amongst
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Yeast: — log p value of GO terms

A. Thaliana : — log p value of GO terms

Best 3 of the alignmenﬁ BIiETopti Best 3 of the alignmenﬁ BIETopti
72,72,61 74 31,31,25 26
65,65,60 65 23,23,16 19
72,56,42 57 31,24,21 21
48,48,48 49 27,26,26 26
46,43,42 47 27,23,21 24
46,31,27 46 22,22,22 23
31,31,31 32 20,18,18 21
23,23,23 28 21,20,20 20
11,11,11 12 23,19,19 19

6,6,5 6 18,17,16 19

DLBCL : —logp value of GO terms

Breast Cancer: — log p value of GO terms

Best3 of the alignment BiETopti Best 3 of the alignmen& BiETopti
22,16,5 20 45,45,45 46
19,16,16 19 22,22,22 33
17,16,16 16 18,17,17 26
17,16,16 16 16,15,14 26

14,2,2 13 16,15,15 25
8,8,7 9 16,14,5 25
22,8,6 8 12,12,12 13
8,8,8 8 55,5 6
13,7,7 7 3,3,3 4
6,6,6 6 3,3,2 3

Table 4.14: Comparison of tof biclusters ofBi ETopti with best3 aligned input bi-

clusters on real data sets using GO terms.

66




Yeast: — log p value of motifs A. Thaliana : — log p value of motifs

Best 3 of the alignmenﬁ BIiETopti Best 3 of the alignmenﬁ BIiETopti
32,24,21 32 22,18,18 45
32,22,22 32 20,20,18 29
24,23,22 23 19,18,17 23
18,15,13 20 18,18,18 18
15,15,14 20 14,12,10 18
14,14,14 15 10,9,8 12
11,10,9 13 12,11,10 11

9,9,7 12 10,10,10 11

8,5,5 9 11,9,8 10

7,7,5 10 8,7,7 8
DLBCL : —log p value of motifs Breast Cancer: — log p value of motifs

Best3 of the alignment BiETopti Best 3 of the alignmen& BiETopti
28,22,16 30 16,15,12 16
19,18,16 20 15,15,14 16
18,18,18 20 15,13,12 12
17,16,16 18 12,11,11 11
14,12,10 18 10,10,10 10
10,10,8 10 9,9,8 8

12,9,9 12 7,7,6 8
10,10,9 12 54,3 5
13,7,7 13 3,3,3 5
6,6,6 8 3,2,1 5

Table 4.15: Comparison of tof biclusters ofBi E'Topti with best3 aligned input bi-
clusters on real data sets using common motifs.
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the existing algorithms on Yeast. On A. Thaliana and DLBCL, performance of ISA is
best amongst the existing algorithms. OPSM takes the lead in Breast Cancer data set.
BiETopti outperforms the best in each of these organisms except A. Thaliana. However

in DLBCL there is a marginal difference in the performanceBs# T opti and the best

algorithm.
80 -
GO Terms
70 -
60 -
B OPSM
= 50
= B 154
g 40 -
- CC
s
v 30 A B BIMAYX
20 4 B BiETopti
10 -
D -
Yeast A Thaliana DLBCL Breast Cancer

Figure 4.10: BiETopti compared with OPSM, ISA, CC and BIMAX.
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Chapter 5

BiETclassi - Biclustering Ensemble

Techniqgue using Classifiers

The previous chapter explained the ensemble algorithm based on optimization technique.
The results were promising but required the schemes to have equal number of biclusters.
To do away with this restriction we propose another ensemble algorithfi/ classi

that makes use of classifiers for the ensembling purpose.

Traditional classifiers such as discriminant analysis and support vector machines
typically label two class data. Various techniques like one-against-all are used to extend
them for multi-label and multi-class classification. These techniques cannot be directly
plugged in for biclusters as the set of attributes (samples) is different for different biclus-
ters. Thus, we extend one-against-all classification methods for multi-label classification
and apply to biclusters one by one. For each label (bicluster), we build a binary class
problem so that the genes associated with that label are in one class and the rest are in
class labeled 0. For each binary class problem, a different set of features corresponding
to the conditions of the bicluster is used.

We study the performance &fi E'Tclassi on synthetic and real data sets and found

that Bi ET classi produced biclusters that were biologically much more significant than
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not only the input biclusters but also biclusters produce®bi T opti. Besides produc-
ing better biclustersi3i E'T'classi also improved upon time as compared?ar T opti.

A brief review of classifiers used in our approach is presented in Section 5.1. The
approach is explained in detail in Section 5.2 and the results of various experiments per-

formed are shown in the Section 5.3.

5.1 Preliminaries

In this section we describe the classifiers [DHS01] used in our approach. Discriminant
Analysis (DA) [Fis36] and Support Vector Machine (SVM) [CSTO0ODb] are statistical tech-
niques used for classifying multivariate data in different classes. DA seeks a hyperplane
(a discriminator variable) that best separates the scatter of the projected data points on it.
It assumes that the data points are normally distributed in their respective classes on each

variable.

.
. e

R R - T T R . -
e e e e

Figure 5.1: Sample Data.

Figure 5.1 shows sample data having 2 classes. Different classes are shown using red
and blue colours. Distribution of the points along x-axis and y-axis is shown in Figures 5.2

and 5.3 respectively. As is visible in the figures, there is a large overlap between the
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Figure 5.3: Projection of data points along y-axis.
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classes thereby implying that the classes are indistinguishable on each of the attributes
individually. A new discriminating dimension is calculated and the projection along this
dimension is shown in Figure 5.4. It shows a decrease in the overlap and thus helps in

classifying the objects in a better way.

055 .
0.5} .
045 .
04t .
035 .

Density

0.25F E
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0151 E
0.1r b
0.05r E

Figure 5.4: Projection of data points along the new dimension calculated by DA.

SVM seeks a hyperplane that maximizes the margin between the closest pair of
points, one from each class. The two points are called the support vectors. There exist
multiple hyperplanes that separate the two classes but not all of them are equally good
separators. For the two dimensional data shown in Figure 5.1, The possible separators
(lines here) are shown in Figure 5.5. Figure 5.6 shows one such separator along with its

support vectors.

5.1.1 Discriminant Analysis

Discriminant Analysis establishes relationships between attributes for classifying objects

into one of the several populations, by identifying attributes that best discriminate be-
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Figure 5.5: Various Lines separating the data points in two classes.

Figure 5.6: Hyperplane as calculated by Support Vector Machine.
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tween the members of a group. In DA, the classes represent the dependent variables and
the predictors represent the independent variables. It is a 2-step process of testing and
classification. There is a matrix of total variances and covariances; likewise, there is a
matrix of pooled within-group variances and covariances. The two matrices are com-
pared to find whether or not there is any significant difference between groups and then it
tries to see which of the variables have significantly different means across the groups that
lead to the discrimination. This method maximizes the ratio of between-class variance to
the within-class variance. In DA, data is modeled and projected onto a single dimension
and class assignment is made for a given point.

Suppose that we have a setrofl dimensional samples,, z.....z,,. Let X denote
then x d matrix with data points along the rows and dimensions along the column. Let
n, denote the number of samples in the subi3etabeledw; andn, be the number of
samples in the subsét, labeledw,. Each component (feature/attribute) of a data point is
assigned a weight; to compute the discriminate variable. Lsetbe thed x 1 vector of

weights. LetY be al x n vector defined as follows

(y17y27'--7yn) = (W/ 'X1,WI'X2,...WI~Xn)

Herew' - x is the dot product ofv’ andx.

Further letY is partitioned into the subsel§ andY; corresponding td; and D,
respectively. The aim is to find that maximizes separation between the two classes.
Geometrically, if|w|| = 1 eachy; is the projection of the correspondirg onto a line
in the direction ofw . Actually the magnitude ofv is of no real significance because it
merely scaleg. The direction ofv is important, however. If we imagine that the samples
labeledwv, fall more or less into one cluster while those labelgdall in another, we want
the projections falling onto the line to be well separated. It should be abundantly clear that
if the original distributions are highly overlapping, even the vest unlikely to provide

adequate separation and thus the method will be of little use. We now turn to the matter
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of finding a good directiom that provides a good classification. Difference of the sample
means of the projected points is a good measure of separation between the two classes. If
m; denote the d dimensional & d) sample mean and is given by
1
m; = — Z X
Ly xeD;

then the sample mean for the projected points given by

W:%Z?J

' yey;

1 I !
= — g W - X=W -1my
n;
xeD;

is simply the projection ofn; alongw. It follows that the distance between the projected

means is

!

My — M| = |w - (my — msy)

This distance can be made arbitrarily large by scaling the difference of sample means
m;, my by |w|. Thus to obtain good separation of the projected data we would actually
want the difference between the means to be large relative to some measure of the standard
deviations for each class. Rather than forming the sample varianaecr for projected

samples is defined for each of the two classes and it is given by

5 =) (y—m)

yeyY;
512 + 552 is called the total within-class scatter of the projected samplegiamd (s, +
552) is an estimate of the variance of the pooled data. The fisher linear discriminant then
determines the weight vector for which the discriminant function
| =l

)= 512 + 557
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is maximum. To obtain J(.) as a function @f, scatter matriceS,, andSg are defined.
Let
S; = Z (x — mi)/ (x — my;)

xED;

Then
Swzsl+82

is defined to be the within class scatter matrix. Also,

Then within-class scatter of the projected samples can be written as
SP 455 = WISWW
Similarly the between class scatter defined by separation of the projected means obeys
2 ! ’ 2
|m_1—W2| = (W 1M — W 'mz)
=w (m; —m,) (m; — my)w
= W/SBW

where

’

Sp = (m; —my) (m; — my)

is the between class scatter matrix.
Sw is symmetric, positive semidefinite and usually nonsingular,f d. Like wise
Sg is also symmetric and positive semidefinite, but because it is the outer product of two
vectors, its rank is at most one. In termsSy and Sy the discriminating function/
can be expressed as a ratio of the between-class scatter to the within-class scatter and is
written as
w SpwW

J(w) =

W' Sww
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5.1.2 Support Vector Machine

SVMs are based on the principle of Structural Risk Minimization. It maximizes the mar-
gin between the points of two classes by solving a convex quadratic programming prob-
lem. The solution to that problem gives us a hyperplane that has the maximum margin
between the two classes. SVM models the boundary between the data points instead of
modeling the projection of data points themselves as in DA. In support vector machines,
a data point is viewed as@dimensional vector and we want to know whether we can
separate such points withda— 1 dimensional hyperplane. This is called a linear clas-
sifier. There are many hyperplanes that might classify the data. One reasonable choice
for a good hyperplane is the one that provides the largest separation, or margin, between
the two classes. Thus a hyperplane that maximizes the distance to the nearest data points
on each side is aimed. If such a hyperplane exists, it is known as the maximum-margin
hyperplane and the linear classifier it defines is known as a maximum margin classifier.
Let -1 and +1 be the class labels of the two classeX. i$ the vector of dependent
variables representing the class labels therms partitioned into the subset§ andY;
corresponding to the two classes having labels -1 and +1. SVM seeks a hyperplane that
maximizes the margin between the closest pair of points, one from each class. The two

points are called the support vectors. The hyperplane separating the points is given by

w-x+b=0

Herew is thed x 1 vector of direction of the hyperplane. The aim is to fiméndb such
that the separation between the two classes is maximized. Following is true for the points

in the two classes.

woox+b>+1

wox+b<—1
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In other words, we have

Equations for the hyperplanes passing through the two support vectasdx~ in the

two classes are given by

w x4+ b=+1 (5.1)

wx +b=-1 (5.2)

SVM tries to maximize the distandd between these two hyperplanes whfas given

by

(5.3)

Maximizing the margin M is then same as minimizing the following

M=-w -w

The problem becomes a quadratic optimization problem formulated as follows: Minimize
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subject to
yO(w -xW 1) > +1Vi

SVM works by solving this quadratic optimization problem and finding values for

w and b. This is illustrated in Figure 5.6.

5.2 BiETclassi

We use the ‘relabeling and voting * approach to generate the consensus. Relabeling is
done twice, once to align similar biclusters using label correspondence and second time,
it is done using classifiers like DA and SVM which are basically binary classifiers that
work for two classes. However, in gene expression data, genes may be responsible for
more than two functions. Classifiers that can handle multiple classes need to be used
instead. Extensions of DA and SVM that solve the multi class problem are known to
exist in literature [Bis06], but they do not allow the classes to overlap. To be able to
handle overlapping biclusters, one needs to consider the multi label classification [TKO7].
Classifiers that handle multi label and multi class also exist in literature [2Z206, ZZ07] but
they can not be directly applied for our problem as they work on the same set of conditions
for all the labels. On the other hand in gene expression data, different samples/attributes

define different biclusters. Thus we extend these techniques to suit the need of biclusters.

5.2.1 The Approach

Our algorithm works in four phases. First two phases are same as tatEiiopti
wherein input schemes are generated and then aligned so that similar biclusters in differ-
ent schemes get the same label. One of the input schemes is taken as the reference. As

the number of biclusters returned by ensemble is same as that of the reference scheme,
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we choose the scheme with the largest number of biclusters as the reference scheme, in
order not to miss any bicluster. In phase-lll, a classifier is used to predict labels for genes
for each input scheme. This is the main contribution of our approach and we discuss it
in detail in Section 5.2.2. Having predicted the gene labels for each scheme, voting is
used to obtain the final consensus in phase-IV. Voting is also used to obtain labels of the

conditions. Figure 5.7 shows the basic architecture of our algorithm.

5.2.2 Phase lll: Relabeling the Genes using a Classifier
In this phase we will discuss how to use classifiers to predict the labels of the genes. The
challenge with using classifiers to predict the labels for the biclustering problem is three-
fold. One, the biclusters are overlapping. Secondly the biclusters are non-exhaustive i.e.
there may be genes/samples that do not belong to any bicluster. Thirdly, different biclus-
ters are defined by a different set of attributes/samples; third being the most important.
Multi-label classifiers are used to address the first problem. In multi-label classi-
fication, an object may belong to more than one class. It is different from multi class
classification, wherein objects may be categorized into more than two classes but an ob-
ject belongs to one class only. We present a method to extend binary classifiers DA and
SVM to handle multi class and multi label data for biclustering. There are broadly two
ways of handling multi label classification [TKO7, ZZ14]. The first being the problem
transformation and second being the algorithm adaptation. In problem transformation,
the multi-label problem is transformed into a set of binary classification problems, which
can then be easily handled. In algorithm adaptation, algorithms are adapted to directly
perform multi-label classification instead of transforming the problem. Various problem
transformation methods exist in literature. We have used the first method wherein one
binary classifier is trained for each label. For multi class classification we extend one-
against-all classification methods for biclustering. One against all classification method

involves training a single classifier per class. For each label (bicluster), a binary class
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Biclustering schemel (BCS1)

Input Labels
Genel 0
Gene2 1
Gene3 1,2
Gene4 2
Gene5 3
Gene6 3
Gene7 0
(@)
Biclusterl - Conditions (1,2) Bicluster2 - Conditions (2,3)
Input Labels | Predicted labels PL1 Input Labels | Predicted labels PL2
Genel 0 0 Genel 0 0
Gene2 1 1 Gene2 0 2
Gene3 1 0 Gene3 2 2
Gene4 0 1 Gene4 2 2
Geneb 0 0 Geneb 0 0
Gene6 0 0 Gene6 0 0
Gene7 0 0 Gene7 0 0
(b) (©)
Bicluster3 - Conditions (3,4,5)
Input Labels | Predicted labels PL3
Genel 0 0
Gene2 0 0
Gene3 0 3
Gene4 0 0
Geneb 3 3
Gene6 3 3
Gene7 0 0
(d)
Biclustering schemel (BCS1)
Predicted Label PL1 | Predicted label PL2 | Predicted label PL3 | Union of labels | Final labels-BCS1
Genel 0 0 0 0 0
Gene2 1 2 0 1,2 1,2
Gene3 0 2 3 2,3 2,3
Gene4 1 2 0 1,2 1,2
Gene5 0 0 3 3 3
Gene6 0 0 3 3 3
Gene7 0 0 0 0 0
(e

Table 5.1: Working of Modified Classifier.
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problem is built so that the genes associated with that label are in one class and the rest
are in another class. This method is performed for every bicluster of one scheme except
the one with label O (set of genes not belonging to any bicluster are given the label 0).
For each bicluster, the genes in the bicluster are given the label of the bicluster and the
rest of the genes are given the label 0. For each binary class problem, a different set of
features corresponding to the conditions of the bicluster is used to take care of the third
challenge. Finally, a gene is assigned the union of all the labels. This allows us to assign
more than one labels to a gene. This takes care of the overlapping nature of the biclusters.
The process is repeated for every bicluster of one scheme and finally the union of all the

labels is taken to obtain multiple labels(g) for a geney.

The working of the algorithm is explained in Table 5.1. The example shown here
has 7 genes and 5 conditions. Data is subjected to a biclustering algorithm to get an input
scheme shown in Table 5.1 (a). It shows the input labels for all the genes according to
the bicluster it belongs to. All the genes of a bicluster along with its condition set are
subjected to a classifier. This is done for every bicluster. The predicted labels of the genes
are shown in Table 5.1 (b)-(d). Note that the set of conditions is different for different
biclusters. Table 5.1 (e) shows the labels that are assigned to the genes after subjecting all
the genes bicluster wise to the classifier and taking the union of all the predicted labels.
Note that label O (refers to genes not belonging to class) is not taken into consideration for
taking union. If gene is assigned label O by all the biclusters, then only label O (refers to
genes not belonging to any bicluster) is assigned to it. The working is pictorially shown in
Figure 5.8. This procedure is then repeated for every scheme to get the newAldbels
all the genes in all the schemes. Algorithm 2 summarizes the computation of new labels

i.e. \; (g) for thei®* scheme,i=1... H.
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Figure 5.8: Visualization of one against all method. (a) Biclusters of an input scheme (b),(d),(f) the biclusters subjected to
the classifier on reduced set of conditions/attributes (c),(e),(g) new labels predicted by the classifier for the biclusters (h)
union of the new labels obtained in (c),(e) and (g).



/

Input: Labels\;(g), \5(g), ..., A\ (g)
Output: Labels\] (g), \y(9), ..., \i(g)
for i= 1to H do

for j=1to k; do
Train a binary classifier (DA / SVM) with the gene vectors projected

onto the conditions of th¢" bicluster and the class labels fs j }.

form=1to N do
| Predict the labe};(g,,) of the geney,,..

end

end
X (gm) = U; A (gm)
end

Algorithm 2: Predicting gene labels using a Multi-Label Classifier.

Final Gene Labels

Final labels-BCS1 | Final labels-BCS2 | Final labels-BCS3 | Final labels-BCS4 | Final labels-BCS5 | Final labels

Genel 0 0,1 1 0 0 0
Gene2 1,2 1,2 1,2 1 2 1,2
Gene3 2,3 2 1,2 2,3 2 2
Gene4 1,2 1.3 1,3 2,3 1,3 1,3
Geneb 3 2,3 1,2 3 2,3 3
Geneb6 3 2,3 1,2 3 2 0
Gene7 0 0,1 0 1 0

Table 5.2: Final Consensus.

5.2.3 Phase IV: Final consensus

Voting is used in this phase to form the consensus. \oting is first dong’@y) to

generate the final consensus Iabelﬁr(g) for the genes. A label is assigned to a gene

g in the final ensemble if at leastnumber of schemes assign the labeljtoTable 5.2

shows the labels assigned to the genes. Here, for representational purpose five schemes

have been ensembled for the final consensus-drab been taken as 80%.
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Notations:

Letd,(i,1) =1ifl € X/ (g), i=1...H
Lets.(i,0) =1ifl € \j(c), i=1...H
Input: X" (g),\ (c)

Output: Final labelings\(g),\(c)

for k= 1to N do

~

Agr) = ¢
for I=1to max;k; do
[* for every label */
computen(gy) =, 64, (2,1)
[* compute the number of schemes assigning label
| to the k™ gene

if n(gr) > 7 then
| Mae) = Mae) UL}

end

end

end
fork=1to ddo

Mew) = ¢

for [ = 1to max;k; do
computen(cy) = >, ¢, (2,1)
if n(cy) > 7 then

| Mew) = Me) ULl

end

end

end

Algorithm 3: Voting Phase.

86




Similarly to obtain the final labeling(c) for the conditions, voting is done oxi(c)

of the aligned biclusters. This phase is explained in Algorithm 3.

5.3 Experimental Results

Experiments were performed on synthetic as well as real data sets. To obtain a good
threshold value for, experiments were performed on data set DS1. The results at varying

threshold are shown in Table 5.3. It was found that the results improved with the increase
in the threshold value, however it tends to decrease after a threshold value 80%. So we

fixed the threshold value for voting at 80% for the rest of the experiments.

tg,tc | 50% | 60% | 70% 80%| 90%
-5,2 | 0.83 | 0.84| 0.84 |0.85 0.80
-4,2 | 0.84| 0.84| 0.84 |0.85 0.80
-.35,2| 0.96 | 0.96 | 0.96 |0.98 0.88
1,1 | 0.73 | 0.73 | 0.73 |0.74 0.69
0,1 | 0.56| 0.56 | 0.56 |0.57 0.50

Table 5.3: Effect of different voting threshold values on AS on DS1.

5.3.1 Results on Synthetic Data Sets

As in previous chapter, two sets of experiments were performed on both the synthetic
data sets of Prelic (DS1 and DS2). Iterative Signature Algorithm (ISA) [BIB0O3] was used
as the biclustering algorithm. In the first experiment the seed was changed to generate
the schemes keeping,(t.) fixed whereas in the second experiment thevas changed

to get the input schemes keeping the random gene seet] andstant. In both the sets

of experiments the algorithm was executed20rinput schemes. The experiments were

repeate@0 times and the results were averaged over the runs.
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Performance oB3i E'T classi was compared with the best of the input schemes using
BCE and AS. DA and SVM were used for prediction of labels and the algorithms are
referred asBiE'T DA and BiE' TSV M respectively. Tables 5.4 and 5.5 compare the

SchemesBest | BiETopti | BiETclassi
— BIiET | BIET

ty,te | SVM | DA
-0.50, 2 3402 2540 2508 | 2489
-0.40,2 3830| 3002 | 3002 | 2981
-0.35, 2 3618 2652 2562 | 2087
1,1 | 5218 3580 3173 | 3156
0,1 | 5860 3768 | 3721 | 3712

Table 5.4: Best of input schemes vs BiETclassi on DS1 for the first set of experiments
using BCE.

SchemesBest | BiETopti BIiETclassi
— BIET | BIET
tgrte | SVM | DA
-0.50,2 0.82| 0.82 0.82 | 0.83
-0.40,2 0.78 0.79 0.79 | 0.83
-0.35,2 0.90 0.91 0.92 | 0.95
1,1 | 0.69 0.70 0.73 | 0.73
0,1 | 0.55 0.56 0.56 | 0.56

Table 5.5: Best of input schemes vs BiETclassi on DS1 for the first set of experiments
using AS.

BCE and AS of the best input schemes and that of the biclusters produégdhiyclassi
on DS1. Tables show results for first set of experiments. The best was computed from the

400 (20 x 20) schemes. The values shown are the average of the values obtained in the
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20 runs of each experiment. Biclusters produceddy T classi are also compared with
those produced byi ET opti.

The results for the second set of experiment are shown in Table 5.6. Results are
shown both with BCE and AS.

Evaluation Best | BiETopti BIiETclassi
Criteria BIET | BIET
SVM | DA
BCE 3180 2752 2527 | 2518
AS 0.81 0.82 0.84 | 0.85

Table 5.6: Best of input schemes vs BiETclassi on DS1 for the second set of experiment.

The following inferences can be drawn from the tables:

e BiETclassi improves upon the performance of the best input schemes.

e Quality of biclusters produced biiFETclassi is superior to those produced by

BiETopti and can be seen in Figures 5.9- 5.10 also.

e BiET DA performs better thawiET'SV M.

Effect of noise

Noisy data set (DS2) of Prelic et al. was used to study the impact of noise on the per-
formance of BiET classi. Table 5.7 shows the results for the first set of experiments
using BCE. Table 5.8 gives the AS values for the same. Again, resulisidf classi are
shown both with SVM and DA.

Table 5.9 gives the result for the second set of experiment for the synthetic data set
DS2. The tables show th&iFETclassi was able to produce biclusters better than the
best of the input schemes even in presence of noise. Even in noisy data 5&tD A
performed better thaR: ET'SV M and alsoBi ET' D A outperformedBi ETopti.
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Figure 5.9: BiETclassi compared with BiETopti on DS1 using BCE.
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Figure 5.10: BiETclassi compared with BiETopti on DS1 using AS.
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SchemesBest | BiETopti | BiETclassi

- BiET | BiET
tg te | SVM | DA
90,1 | 2865| 2431 | 2314 2300
1,.5 | 3012| 2650 | 2660 | 2592
-35,2| 4187| 3256 | 3187 | 2891

Table 5.7: Effect of noise on BIETclassi (data set DS2) for the first set of experiments
using BCE.

SchemesBest | BiETopti | BiIETclassi

- BIET | BiET
tyte | SVM | DA
.90,1|0.87| 0.88 | 0.89 | 0.89
1,5 | 0.77| 0.78 | 0.78 | 0.79
-35,2/050| 051 | 0.50 | 0.65

Table 5.8: Effect of noise on BiETclassi (data set DS2) for the first set of experiments
using AS.

Evaluation Best | BiETopti BIiETclassi

Criteria BIET | BIET
SVM | DA

BCE 2588 2312 2113 | 1981
AS 0.92 0.92 0.95 | 0.98

Table 5.9: Effect of noise on BiETclassi (data set DS2) for the second set of experiment.
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Time Comparison

The algorithms were also compared on the basis of the time taken by them.

Comparing BIETDA and BIETSVM

Tables 5.4- 5.9 show th&i ET'classi performs better in terms of quality when DA
was used as a classifier as compared to the case when SVM was used as a classifier. Fur-
ther, we computed the average time taken by the Buthi7T" D A as well asBiET'SV M
for the experiments on both DS1 and DS2. The time was only computed for the phase-
Il i.e. for running the classifier, it does not include time for generating the schemes i.e.
Phase-1 and also time for forming the consensus i.e. Phase-Ill is not taken into account.
BiET DA took 0.29 seconds on DS1 an@21 seconds on DS2 whereds ET SV M
took 7.6 seconds on DS1 angl88 seconds on DS2 thereby suggesting tRak'T' D A
was faster thaB3i ET SV M.

Comparing BiETclassi and BIiETopti

Table 5.10 shows the total time taken ByETopti and BiET classi algorithms.
Time shown forBi ET classi is with DA as classifier. Table clearly indicates that the time

was reduced if ensemble was produced using classifiers instead.

SchemesTime(sec)| Time(sec)

ty,t. | | BiETopti | BiETclassi
-0.50,2 30.3 18.3
-040,2 285 17.7
-0.35, 2 27 15.6
1,1 51 30.3
0,1 46.7 24.9
vary t, 40 22.6

Table 5.10: Time of BiETclassi compared with BiETopti on DS1.
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Effect of changing the reference scheme

Experiments were performed to show the effect of reference scheme on the output. Table 5.11

Ref.Scheme (#BC) BIETDA
m1(11) 0.85
Ref.Scheme(#BC) BIETDA

w2(9) 0.77

71(13) 0.98
73(8) 0.78

72(12) 0.97
74(7) 0.68

73(12) 0.99
75(6) 0.59

74(9) 0.99
76(5) 0.50

75(9) 0.99
77(5) 0.51

76(8) 0.88
78(4) 0.59

DS2
79(1) 0.37
DS1

Table 5.11: Effect of reference scheme on AS on both the data sets DS1 and DS2.

shows the impact of changing the reference scheme on the results. It is evident that the
results deteriorate as the number of biclusters in the reference scheme reduces. Last row
of the table shows that if a scheme with single bicluster is included and is chosen as a
reference, the performance deteriorates drastically. Study on the noisy data shows that
the results are best when a reference scheme has number of biclusters close to the number
(10) in this case of actual biclusters. Thus, if we have a prior knowledge of the number of
biclusters in the data set, we should choose the scheme with number of biclusters closest
to the actual number of biclusters as the reference. Otherwise, we choose the scheme with

maximum number of biclusters as the reference scheme.
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5.3.2 Results on Real Data Sets

Experimental studies were performed on the expression data set of Yeast, DLBCL, A.

Thaliana and Human Breast Cancer WRhE7'SV M andBiET D A. On each of these,

we generated input schemes by running ISA each time with hundred different gene seed
vectors. Sizes of the biclusters were kept to be comparable to eliminate the effect of
size of biclusters on thg-values. Tables 5.12 - 5.13 show the tdpbiclusters obtained

from BiET classi along with their aligned input biclusters which clearly show that there

is a huge improvement in the quality of the biclusters obtained. Table 5.12 shows the

GO terms whereas in Table 5.13 evaluation is done on the basis of motifs. As the tables
show, Bi E'T'classi outperforms the best of the input schemes on the real data sets most

of the times. Also the comparison with: ET opti is shown to endorse thé&ti E'T'classi

outperformsBi ET opti.

Comparison of BIETclassi with existing biclustering algorithms and BiETopti

Figure 5.11 shows the comparison of the biclusters produceBilbyl classi with the
biclusters produced by existing biclustering algorithms like order-preserving sub ma-
trix (OPSM) [BDCKYO03], Cheng and Church (CC) [CC00], BIMAX [PBD6] and

ISA [BIB0O3]. The performance oBiFETclassi is also compared with the previous en-
semble algorithmBiET opti. BiET classi outperforms the best in each of these organ-

isms except A. Thaliana where OPSM and ISA perform better.
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Yeast: — log p-value of GO terms

A. Thaliana : — log p-value of GO terms

Best3 BIET | BIETclassi Best3 BIET BiETclassi
of the opti | BIET | BIET of the opti | BIET BIET
alignment SVM | DA alignment SVM DA
72,72,61 | 74 74 76 31,31,25 | 26 27 32
65,65,60 | 65 66 68 23,23,16 | 19 23 23
72,56,42 | 57 59 62 31,2421 | 21 24 33
48,48,48 | 49 49 49 27,26,26 | 26 27 28
46,43,42 | 47 47 49 27,2321 | 24 27 28
46,31,27 | 46 47 48 22,22,22 | 23 23 23
31,31,31 | 32 33 37 20,18,18 | 21 21 23
23,23,23 | 28 29 29 21,20,20 | 20 20 21
11,171,121 | 12 12 12 23,19,19 | 19 22 23
6,6,5 6 6 6 18,17,16 | 19 21 23
DLBCL : —logp-value of GO terms  Breast Cancer: — log p-value of GO terms
Best3 BIET BiETclassi Best3 BIET BiETclassi
of the opti | BIET | BIET of the opti | BIET BIET
alignment SVM DA alignment SVM DA
22,16,5 20 21 23 45,4545 | 46 48 48
19,16,16 | 19 19 22 22,22,22 | 33 35 36
17,16,16 16 18 25 18,17,17 | 26 27 27
17,16,16 | 16 16 18 16,15,14 | 26 30 31
14,2,2 13 14 15 16,15,15 | 25 25 26
8,8,7 9 9 12 16,14,5 25 26 26
22,8,6 8 8 8 12,12,12 | 13 13 13
8,8,8 8 8 12 5,5,5 6 7 7
13,7,7 7 11 15 3,3,3 4 4 4
6,6,6 6 6 6 95 3,3,2 3 3 3

Table 5.12: Comparison of top0 biclusters of BiETclassi with best aligned input

biclusters on real data sets using GO Terms.




Yeast: — log p-value of motifs A. Thaliana : — log p-value of motifs

Best3 BIET | BIETclassi Best3 BIET BiETclassi
of the opti | BiET | BIET of the opti | BiET | BIET
alignment SVM | DA alignment SVM DA
32,2421 | 32 34 35 22,18,18 | 45 48 50
32,2222 | 32 32 33 20,20,18 | 29 30 30
24,2322 | 23 26 26 19,18,17 | 23 25 27
18,15,13 | 20 22 23 18,18,18 | 18 18 18
15,15,24 | 20 22 22 14,12,10 18 19 19
14,14,14 | 15 16 18 10,9,8 12 13 13
11,10,9 13 15 15 12,11,10 11 12 13
9,9,7 12 12 13 10,10,10 11 11 11
8,5,5 9 9 9 11,9,8 10 11 12
7,7,5 10 10 10 8,7,7 8 8 8
DLBCL : — log p-value of motifs Breast Cancer: — log p-value of motifs
Best3 BIET | BIETclassi Best3 BIET BiETclassi
of the opti | BIET | BIET of the opti | BIET BIET
alignment SVM | DA alignment SVM DA
28,22,16 | 30 32 33 16,15,12 16 17 17
19,18,16 | 20 21 21 15,15,14 | 16 18 19
18,18,18 | 20 20 20 15,13,12 | 12 15 15
17,16,16 18 19 20 12,11,11 11 13 13
14,12,10 | 18 19 20 10,10,10 | 10 10 10
10,10,8 10 10 10 9,9,8 8 9 9
12,9,9 12 13 14 7,7,6 8 8 8
10,10,9 12 12 12 54,3 5 5 5
13,7,7 13 14 14 3,3,3 5 6 6
6,6,6 8 8 8 9% 3,2,1 5 6 7

Table 5.13: Comparison of top) biclusters of BiETclassi with best aligned input
biclusters on real data sets using common motifs.
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Chapter 6

BiETmetaclus - Biclustering Ensemble

Technigue using Metaclustering

Hungarian algorithm, an expensive algorithm in terms of time, needs to be invoked to
align similar biclusters in different input schemes, in bBtET opti as well asBi ET classi.

Both these algorithms also require an optimization/classification problem to be solved.
This chapter focuses on a technique that does away with the requirement of aligning the
input schemes. Moreover there is no requirement of solving either optimization or clas-
sification problem. The technique BiETmetaclus, instead, pools in all the biclusters and
then group similar biclusters in metaclusters. We propose the use of mutual information
(MI) to find similarity between biclusters. It is believed that biclusters, sharing high con-
tent of information about each other and less information with other biclusters, form a
more cohesive group.

Various similarity measures that have been successfully and satisfactorily used for
several years, capture only the linear relationships between the objects. In particular,
a vanishing correlation coefficient implies absence of only linear dependencies [HG95,
PMBGO07, KBG 07, SKD*02, SDSKO03]. However, nonlinear relationships like quadratic

or sinusoidal etc. may exist between the genes. Kraskov et al. [KSG04], Steur et al.(8KD
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Butte and Kohane [BK00] and Michaels et al. [MC88] have shown, through their work,

that mutual information is a better and general criterion for extracting complex relation-
ships among genes. Kraskov et al. worked with yeast data and found that even though
correlation coefficient between few gene pairs was zero, the mutual information between
them was non zero thus indicating that other non linear dependencies exist between the
genes. Steur et al. showed that higher correlation coefficient implies higher mutual in-
formation but two variables having very low values of correlation coefficient may still
be related to each other. Butte and Kohane also worked with yeast data set. They hy-
pothesized that gene pairs with high mutual information between them are also related
biologically. They constructed networks of various genes having high mutual informa-
tion between them and found that each network corresponded to some biological activity.
They also found mutual information to be a better similarity measure as compared to
linear correlation coefficient. According to Priness et al. [PMBGO7], it is resistant to

outliers, noise and missing data.

Metaclusters are obtained by collecting the biclusters with high pairwise mutual
information. The concept of well separated seeds is used to minimize the between meta-
cluster information. Voting is then done on metaclusters to form the final consensus. To
endorse the use of mutual information as a similarity measure, we compare it with Biclus-
ter Similarity Index (BSI) also to form the metaclusters. BSI, discussed in Section 4.1.3,
is the modified form of the measure that has been successfully used to compute similar-
ity between clusters [KGO7]. The algorithms using Ml and BSI are respectively called
BiETMI and BiETBSI. The results show that the biclusters produced by these al-
gorithms are better than the input biclusters. It was also observed that the biclusters
produced using Ml are biologically more significant than the ones produced by the other
similarity measure, BSI. Experiments also show that the time taken is greatly reduced as
compared taBi ETopti and Bi ET classi. BiETopti algorithm takesD((N + d) * k)35
time. BiETclassi uses classifiers like DA and SVM having the complexity(fN?).
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The classifier is invoked? - k£ times in the algorithm. Thus the total time complexity
is O(H - k - N®). BiETmetaclus on the other hand uses similarity measures like Mu-
tual Information and BSI. The time complexity &i ETmetaclus is O((H - k)* - Nd).
Ignoring the small constani§ andk time complexity ofBiE'T classi, Bi ET'metaclus
andBiETopti is O(N?), O(Nd) andO((N + d)*®) respectively. The value afis gen-
erally much smaller as comparedAd Thus, BiETmetaclus is much faster than both

BiETopti as well asBiE'T classi.

6.1 Preliminaries

We have used two measures of similarity to group biclusters viz. Ml and BSI. In this
section we give a brief description of MI. The other measure BSI was discussed in Sec-

tion 4.1.3.

Mutual Information

Mutual Information between two random variables X and Y is a measure of information
contained in X about Y and vice versa. If given a value of X, it is easy to predict the
value of Y then X contains good amount of information about Y. Clearly, if X and Y are
dependent, X and Y can predict each other well and we say that the mutual information
between them is high. And, if X and Y are independent, they cannot predict each others
behavior and we say that the mutual information between them is zero. Mutual informa-
tion is defined as a measure of divergence of the observed joint distribution of X and Y

from the hypothesis that X and Y are independent and is given as:

__ - ) log P2 ¥ P(Y)
MI(z,y) = Er:zy:p( ,y) log 7 0)
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As it is a function of the distribution of the variables X and Y, it does not depend on the

actual values taken by X and Y, rather it depends on their probability distributions.

The unit of mutual information is defined corresponding to the base of the logarithm
in the above equation i.e. nats fbrg., bits for log,, and Hartleys forlog,,. Mutual
information is non negative and symmetrical id./(X,Y) = MI1(Y, X). Also, mutual
information is zero if and only ifX andY are statistically independent i.e. vanishing
mutual information does imply that the two variables are independent. However, it is not
a true distance between distributions as it does not satisfy the triangle inequality. It does

not require normalization and is robust towards noise, outliers and missing data.

Mutual information is a function of joint probability distribution and the marginal
probability distribution. However, one generally does not have a prior knowledge about
the distributions. Thus one needs to estimate them. Two broad classes of approaches
namely Parametric and Nonparametric are used to estimate the probability distribution
functions. Parametric method involves assuming a model for the probability density func-
tion and then determining the various parameters from the data. However, if the assump-
tion is poor the results are poor. In contrast to the parametric approach no assumption
about the underlying probability density function is made in the nonparametric approach.
Histogram method and Kernel density estimation are two methods of estimating proba-

bility density function by the nonparametric approach.

6.2 BIETmetaclus

Our algorithm works ir8 phases. Schemes are generated in phase-l and this is same as
that in the last two chapters. Phase-1l deals with the formation of metaclusters and voting

is done to form the consensus in phase-lIl.
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6.2.1 Phase Il: Metacluster Formation

In this step, biclusters of all the schemes are collected in a@palid groups are formed
on the basis of mutual information. To compute mutual information between two biclus-
ters drawn from two different schemes, columns of the membership matrix (as described
in Table 4.4) are used. Groups, called metaclusters are formed so that they share max-
imum information within the biclusters in a group and minimum information with the
biclusters in other metaclusters. Thus metaclusters are formed with the aim to maximize
within metacluster information and minimize between metacluster information.

To be able to form well separated groups, we construct & s#tseed biclusters.
Initially this set is empty. The first seed bicluste€’, is chosen at random fror, starred
and then all biclusters with high mutual information witC'; are grouped together to
form one metacluster. Second seed biclugték, is chosen farthest frorfi i.e. the one
that has least mutual information withC,. Biclusters with high mutual information
with BC; are put in the second metacluster. Next seed bicluster is chosen farthest from
S i.e. the one that has least mutual information with bBih; and BC,. The process
of forming metaclusters and selecting a farthest seed bicluster is repeated until no more
biclusters are left to be grouped. This method of choosing the seed has also been used
in [GAO8] and [APW"99]. Figure 6.1 shows the formation of metaclusters in pictorial
form. The pseudo code for this phase is shown in the Algorithm 4.

In the next phase a representative of each metacluster is formed. The number of

output biclusters is thus determined by the algorithm itself without requiring the user to

specify it.

6.2.2 Phase-lll: Consensus Formation

Previous phase resulted in the formation of many metaclusters, each having several simi-

lar biclusters in it. In this phase, we select one representative from each metacluster. The
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Figure 6.1: Visualization of metacluster formation.
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Input: G, the set of all the biclusters in the pool.
Let S be the set of seed biclusters.

Initially S is empty.

Initially all the biclusters are ungrouped.

let; =1

BC} = random(), the first seed bicluster

while no more bicluster is left to be groupeid
G(i) = Group of biclusters iz with high Ml with the BC

Mark all the biclusters irt7(i) as grouped.
S=SU BC?}
uBC=all ungrouped biclusters

BCY, =argmingeupe(mazpe-esMI1(BCy, BC*))

1=1+1
end

Algorithm 4: Pseudo code for metacluster formation.

Input: G(), all metaclusters formed in Phase-|

for all groupsG (i) do
compute frequency of (gene, condition) pairs in all biclusters @ and

output the representative biclust8€’'(i) containing the (gene, condition)

pairs with frequency> 7.
end

Algorithm 5: Pseudo code for selecting a representative from a metacluster.
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bicluster that shares the maximum information with the rest of biclusters in the metaclus-
ter is a good candidate for the representative of the group. However, such a candidate has
the limitation of being one of the biclusters in the metacluster. On the other hand, there
may be some (gene, condition) pairs in other biclusters (of the same metacluster) that are
important and should have been a part of the final bicluster. Thus, instead, we form the
representative bicluster on the basis of frequency of (gene, condition) pairs. Frequency
of all (gene, condition) pairs is calculated and the pairs whose value is greater than the
thresholdy are reported as the elements of the final bicluster. Experimentally also, it was
observed that forming a representative in this manner is a better alternative than the first
method. Thus, this method was used in the experiments performed. Algorithm 5 provides

the pseudo code for this phase.

6.3 Experimental Results

Experiments were performed both on synthetic data sets and real gene expression data sets
to show the efficiency of our approacB: ET'metaclus involves formation of metaclus-

ters which are formed by grouping similar biclusters. MI/BSI is used to find the similarity
between the biclusters and in our experiments, biclusters with similarity 90% or more are
grouped to form a metacluster. The process of forming the metaclusters is repeated till
no more bicluster is left to be grouped. After forming the metaclusters, representative
of each metacluster is formed. This is achieved by taking those (gene, condition) pairs
having frequency greater than or equal to threshold valéiged at 60%. The biclus-

ters produced bysi ET'metaclus were also compared with both the previous algorithms,
BiETopti and BiE'T classi.

106



6.3.1 Results on Synthetic Data Sets

Two sets of experiments were performed as in the previous two algorithms on both the
data sets of Prelic. In the first experiment the seed was changed to generate the schemes
keeping {,.t.) fixed whereas in the second experimenttheas changed to get the input
schemes keeping the random gene seedandnstant. In both the sets of experiments

the algorithm was executed @f input schemes. The experiments were repezidnnes

and the results were averaged over the runs.

SchemesBest | BiETopti | BIETclassi BiETmetaclus
tg,te | BIETDA BIETBSI | BIETMI
-0.50, 2 3402 2540 2489 2540 2540
-0.40, 2 3830 3002 2981 2998 2990
-0.35, 2 3618 2652 2087 2562 2426
1,1 |5218| 3580 3156 3521 3428
0,1 | 5860 3768 3712 3740 3740
Table 6.1: Best of input schemes vs BiIETmetaclus on DS1 for the first set of experiments
using BCE.
SchemesBest | BiETopti | BiETclassi BiETmetaclus
tg,te | BIETDA BIETBSI | BIETMI
-0.50, 2 0.82 0.82 0.83 0.82 0.82
-0.40,2 0.77| 0.79 0.83 0.81 0.81
-0.35,2 0.90 0.91 0.95 0.92 0.93
1,1 | 0.69 0.70 0.73 0.71 0.72
0,1 | 054 0.56 0.56 0.56 0.56

Table 6.2: Best of input schemes vs BIETmetaclus on DS1 for the first set of experiments

using AS.
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Table 6.1 compares the performanceefe T metaclus with the best input schemes
and also that oBi ETclassi and BiE'Topti on DS1 in terms of BCE. We concluded in
the last chapter thdsi E'T'D A performed better thaB: ET'SV M so for the comparison,
only BiETDA is taken. The values shown in the table are the average of the values
obtained in the20 runs of each experiment. Colunzngives the best values, of the in-
put schemes, over all the runs. The table shows the results for first set of experiments.
Similarly Table 6.2 compares the performance of various algorithms in terms of other
evaluation method, AS. The results for the second set of experiment are shown in Ta-
ble 6.3.

Evaluation Criteria| Best | BiETopti | BIETclassi BiETmetaclus
BIETDA BIETBSI | BIETMI
BCE 3180 2752 2518 2732 2725
AS 0.81 0.82 0.85 0.82 0.83

Table 6.3: Best of input schemes vs BiETmetaclus on DS1 for the second set of experi-
ment.

The following inferences can be drawn from the tables:

e BiETmetaclus improves upon the performance of the best input scheme both with

MI as well as BSI.

e BiETmetaclus performs better tha®:ET opti in terms of quality and is shown

in Figures 6.2 and 6.3 where all the three approaches are compared.

e BiETMI performs better tha®i ET BS1.

However, observe thddi E'Tclassi performs better tha®i ET'metaclus.
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Figure 6.2: BIETmetaclus compared with BiETopti and BiETclassi on DS1 using BCE.
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Figure 6.3: BiETmetaclus compared with BiETopti and BiETclassi on DS1 using AS.
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Effect of noise

The performance oBi E'T'metaclus was also studied on data set (DS2) of Prelic et al. to
see the impact of noise. Tables 6.4- 6.5 show the results using BCE and AS for the first
set of experiments. Again, results Bf ET'metaclus are shown with both the similarity
measures used: Ml and BSI. Similarly results for the second set of experiment are shown
in Table 6.6. The tables show thBt F'T'metaclus was able to extract biclusters better

than the best of the input schemes even in presence of noise. Also, even in presence of

noiseBi KT M I performs better tha®iET BS1.

SchemesBest | BiETopti | BIETclassi BiETmetaclus
tg,te | BIETDA BIETBSI | BIETMI
90, 1 | 2865 2431 2300 2412 2412
1,.5 | 3012 2650 2592 2631 2618
-.35,2| 4187| 3256 2891 3203 3195
Table 6.4: Effect of noise on BIETmetaclus (data set DS2) for the first set of experiments
using BCE.
SchemesBest | BiETopti | BIETclassi BiETmetaclus
tg,te | BIETDA BIETBSI | BIETMI
90,1 | 0.87 0.88 0.89 0.88 0.88
1,5 | 0.77 0.78 0.79 0.78 0.78
-.35,2| 0.50 0.51 0.65 0.52 0.54

Table 6.5: Effect of noise on BIETmetaclus (data set DS2) for the first set of experiments

using AS.
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Evaluation Criteria| Best | BiETopti | BIETclassi BiETmetaclus
BIETDA BIETBSI | BIETMI
BCE 2588 2312 1981 2100 2091
AS 0.92 0.92 0.98 0.95 0.96

Table 6.6: Effect of noise on BiIETmetaclus (data set DS2) for the second set of experi-
ment.

Time Comparison of BiETopti, BiIETclassi and BiETmetaclus on DS1

It was observed thaBiFET'classi is able to produce biologically better biclusters than

BiETmetaclus but at the cost of time as it can be clearly seen from Table 6.7. The

SchemesTime(sec)| Time(sec) Time(sec)
ty,t. | | BiETopti | BiETclassi | BiETmetaclus
-0.50,2 30.3 18.3 9.9
-040,2 285 17.7 8.9
-0.35, 2 27 15.6 8.4
1,1 51 30.3 231
0,1 46.7 24.9 13.96
vary t, 40 22.6 7.6

Table 6.7: Time of BiIETmetaclus compared with BiETopti and BiETclassi on DS1.

time shown is the total time taken for all the approaches. Time taken for the approach
BiETclassi is with DA as the classifier. FoBiETmetaclus, time has been shown
wherein mutual information is used as the similarity measure. The time takBii¥/metaclus

is less than time taken byi ET classi. BiETmetaclus wins overBiET classi as far as

time is concerned. Thus, there is a tradeoff between the two approaches as far as quality
and time are concerned. Note that with resped®i&'T opti, Bi ETmetaclus improves

as regard to quality as well as time.
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6.3.2 Results on Real Data Sets

Experimental studies were performed on the real expression data setsiwilhmetaclus.

Tables 6.8- 6.9 shows the ta biclusters obtained fronB3: ETmetaclus along with

their aligned input biclusters which clearly show that there is improvement in the quality
of the biclusters obtained. Table 6.8 shows the comparison based on GO terms whereas
Table 6.9 shows the comparison using motifs. The tables showRWal'metaclus
outperforms not only the best of the input schemes but also the biclusters produced by

BiETopti. Tables also show tha: £'T'M I performs better thami ET BS1.

Time Comparison of BiETopti, BiIETclassi and BiIETmetaclus on real data sets

BiETclassi is able to produce biologically better biclusters on real data sets2h&fi'metaclus
but at the cost of time as it can be clearly seen from Table 6BiET metaclus Wins
over BiET'classi as far as time is concerned. Thus, there is a tradeoff between the two
approaches as far as quality and time are concerned. Note that with respe&tfiopti,

BiETmetaclus improves as regard to quality as well as time.

Comparison of BIETmetaclus with existing biclustering algorithms, BiETopti and

BiETclassi

Figure 6.4 shows the comparison of the biclusters produceBd#yT metaclus, with

the biclusters produced by existing biclustering algorithms like order-preserving sub ma-
trix (OPSM) [BDCKYO03], Cheng and Church (CC) [CC00], BIMAX [PBD6] and

ISA [BIB03]. Figure also shows comparison with the previous two ensemble algorithms,
BiETopti and BiETclassi. BiETmetaclus outperforms the best of the bicluster-

ing algorithms in each of these organisms except A. Thaliana. As far as the ensemble
algorithms are concerned, performance®iET metaclus is betweenBiET opti and
BiETclassi.
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Yeast: — log p-value of motifs

A. Thaliana : — log p-value of motifs

Best3 of BiETclassi BiETmetaclus
the input | BiETopti | BIETDA BIETBSI BIETMI
32,2421 | 32 35 34 34
32,22,22 | 32 33 33 33
24,2322 | 23 26 24 25
18,15,13 | 20 23 22 22
15,15,14 | 20 22 22 22
14,14,14 | 15 18 17 17
11,109 | 13 15 14 15
9,9,7 12 13 12 12
8,55 9 9 9 9
7,75 10 10 10 10
DLBCL : — log p-value of motifs
Best3 of BiETclassi BiETmetaclus
the input | BiETopti | BIETDA BIiETBSI BIETMI
28,22,16 | 30 33 32 32
19,18,16 | 20 21 20 20
18,18,18 | 20 20 20 20
17,16,16 | 18 20 19 20
14,12,10 | 18 20 19 20
10,10,8 | 10 10 10 10
12,9,9 12 14 13 13
10,10,9 | 12 12 12 12
13,7,7 13 14 13 13
6,6,6 8 8 8 8

Table 6.9: Comparison of top0) biclusters of BIETmetaclus witB best aligned input biclusters

common motifs.

Best3 of BiETclassi BiETmetaclus
the input | BiETopti | BIETDA BIETBSI BIETMI
22,18,18 | 45 50 48 49
20,20,18 | 29 30 29 29
19,18,17 | 23 27 25 26
18,18,18 | 18 18 18 18
14,12,10 | 18 19 18 19
10,9,8 12 13 13 13
12,11,10 | 11 13 12 12
10,10,10 | 11 11 11 11
11,9,8 10 12 11 11
8,7,7 8 8 8 8
Breast Cancer: — log p-value of motifs
Best3 of BiETclassi BiETmetaclus
theinput | BiETopti | BIETDA BIiETBSI BIETMI
16,15,12 | 16 17 16 16
15,15,14 | 16 19 18 19
15,13,12 | 12 15 15 15
12,11,11 | 11 13 12 13
10,10,10 | 10 10 10 10
9,9,8 8 9 9 9
7,7,6 8 8 8 8
5,4,3 5 5 5 5
3,33 5 6 5 6
321 5 7 6 6
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Organism | BiETopti | BiETclassi | BIETmetaclus

Time(sec)| Time(sec) Time(sec)

Yeast 8200 801 337

A.Thaliana 565 225 165
DLBCL 647 125 86
Breast Cancer 180 155 39

Table 6.10: Comparison of time on real data sets

80 -
GO Terms
70
60 HOPSM
E 50 H 54
I | mce
o 40
1] W BIMAK
& 30
W BiETopti
20 . .
m BiETclassi
10 7 B BiETmetaclus
D 4
Yeast A Thaliana DLBCL Breast
Cancer

Figure 6.4: BiETmetaclus compared with OPSM, ISA, CC, BIMAX, BiETopti and Bi-
ETclassi
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Chapter 7

Concluding Remarks

The task of analyzing the humongous gene expression data is greatly simplified by orga-
nizing the genes into groups that are responsible for different biological processes, thereby
helping the discovery, validation and understanding of various diseases. Biclustering al-
gorithms are particularly useful for this job as a gene may be responsible for more than
one biological activity and different set of conditions may trigger different genomic ac-
tivities. Several biclustering algorithms exist in literature, each one delivering a solution
based on some heuristics. A solution that performs well for one heuristic may not fare
well so well with respect to another. Idea of ensembling various solutions is to help an
end user to obtain a solution that conforms to most of them. As the solution is obtained
by combining the knowledge contained in various solutions, it is expected to be better
than (or at least as good as) most of them with the advantage that the end user need not
worry about which heuristic is best suited for the application at hand. Ensemble methods
have also been designed with the aim to provide solutions which are more robust towards

random seeds and input parameters.

We have presented three ensemble algorithms for biclustering solutions in this work.
BiETopti, the first algorithm is based on an optimization technique. In order to formulate

the objective function and the constraints, global labels are defined. The algorithm forces
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a limitation of having fixed number of biclusters in the input schemes. To do away with
this limitation, another algorithm BiETclassi, based on classifiers is designed. As an
individual bicluster is subjected to a classifier on the reduced set of conditions, we do not
have to worry about the number of biclusters being same in all the schemes.

The results obtained by both the algorithms are promising but both of them are
compute intensive as they involve label correspondence and an optimization problem to be
solved both of which require lot of computation. Thus, another algorithm, BiETmetaclus,
based on the technique of metaclustering using mutual information is proposed.

Experiments were performed on synthetic data sets as well as real data sets. All the
three ensemble algorithms produced biclusters that are better than the input biclusters.
Comparing the three: both BiETclassi and BiETmetaclus perform better than BiETopti
in terms of time as well as quality. There is a tradeoff between BiETclassi and BIET-
metaclus. BIETclassi provides superior biclusters than BiETmetaclus when quality is
considered and BiIETmetaclus comes out to be the clear winner when time is considered
as the comparing parameter.

It would be interesting to see how the benefits of both BiETclassi and BiIETmetaclus
can be exploited to improve upon the quality and the time simultaneously. It would be

nice to see the application of these algorithms in other domains as well.
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