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Abstract

Advances in DNA microarray technology has led to generation of humongous gene ex-

pression data which needs to be analyzed. Clustering and biclustering have found their

application in the analysis of gene expression data. Traditional clustering algorithms fail

as most of the genes are responsive only to a small subset of samples/conditions rather

than the entire set of samples/conditions. Also, a gene that may be responsible for more

than one biological activity and hence may belong to more than one cluster. Similarly

a sample may trigger the expression of genes responsible for more than one biological

activity and hence may belong to more than one cluster. At the same time, there may

be some genes/conditions that do not account for any biological function and thus do

not belong to any. Traditional clustering algorithms typically do not allow the clusters to

overlap and are exhaustive. Biclustering is a technique wherein genes and samples are

clustered simultaneously so that the genes responsive only to the selected set of samples

are clustered together. Biclusters are allowed to overlap both on genes as well as on con-

ditions and they are not exhaustive. Thus Biclustering is more suitable for clustering gene

expression data than traditional clustering algorithms.

Different biclustering algorithms use different heuristics and thus produce different

biclustering solutions. Moreover these algorithms are sensitive to random initialization

and threshold parameters. Given this, an end user often faces the problem of select-

ing the right algorithm for the application/data. One way to improve the robustness and

quality of solutions is to combine/ensemble solutions and obtain a consensus. Several



ensemble techniques have been successfully applied for supervised classification and un-

supervised clustering. Combining biclustering solutions is more challenging as compared

to combining classification and clustering for several reasons: one, biclusters from two

different solutions typically involve different sets of conditions, second, biclusters are

non-disjoint/overlapping and thirdly, they are non-exhaustive.

We present three ensemble techniques for the biclustering problem that allow si-

multaneous overlap of objects as well as attributes. As different schemes/solutions may

assign different labels to the same bicluster, biclusters are aligned appropriately using

Hungarian method, in the first two approaches. In order to solve the label correspon-

dence problem, one needs to solve thek dimensional bipartite matching which is known

to be NP-hard fork >= 3. To get around this problem, one of the schemes was fixed

as the reference scheme and the other solutions were aligned with it. The first algorithm,

BiETopti uses optimization technique to generate the consensus. For the formulation of

optimization problem, global labels are defined. Through experimental studies we show

thatBiETopti improves the quality of the biclusters as compared to those in the input

solutions/schemes. The results are promising but has a limitation of having fixed number

of biclusters in the input schemes. Generally this condition is difficult to meet in biclus-

tering solutions. To overcome this limitation, another ensemble algorithmBiETclassi

is proposed. This algorithm makes use of classifiers such as Discriminant Analysis and

Support Vector Machine for the ensembling purpose. Experiments on synthetic as well as

real data sets show thatBiETclassi performs better thanBiETopti not only in terms of

quality but also in terms of time. Further, Discriminant Analysis as a classifier turns out

to be a better option than Support Vector Machine.

Both the above algorithms are compute intensive as they involve label correspon-

dence followed by optimization problem (directly or indirectly) to be solved. We do away

with the requirement of label correspondence in our third approach calledBiETmetaclus.

The algorithm does not require any optimization problem to be solved. It simply pools



in all the biclusters and uses statistical similarity measures like Mutual Information to

form metaclusters of similar biclusters. We believe that biclusters, sharing high content

of information about each other and less information with other biclusters, form a more

cohesive group. Mutual Information has been considered to be a more general measure to

capture linear as well as non linear associations or dependencies amongst genes. Besides,

it is also robust towards noise. Finally voting is done to form the consensus. Exper-

imental studies showed thatBiETmetaclus provides better biclusters thanBiETopti

both in terms of quality as well as time. However, there is a tradeoff between quality

and time amongstBiETmetaclus andBiETclassi. BiETclassi performs better than

BiETmetaclus in terms of quality most of the times whereasBiETmetaclus is faster

thanBiETclassi.

MATLAB was used as the platform for the implementation of our work. Optimiza-

tion in BiETopti was done using LINGO tool. Experiments were conducted both on

synthetic data sets and real data sets ofArabidopsis Thaliana, Saccharomyces Cerevisiae,

Human Breast Cancerdata andDiffuse Large B Cell Lymphoma. To assess the quality

of biclusters on synthetic data sets, measures like biclustering error and agreement score

were used whereas the biological significance of the biclusters on real data sets was val-

idated using online biological toolsDAVID (Database for Annotation, Visualization and

Integrated Discovery) andRSAT(Regulatory Sequence Analysis Toolbox).

We hope that our work would help in delivering useful information to biologists in

the analysis of gene expression data.
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Chapter 1

Introduction

1.1 Motivation

The analysis of gene expression data (also referred to as genomics data) has become

a highly popular technique for studying the biological mechanism of organisms. One

can study behaviour of thousands of genes simultaneously in a single experiment in a

microarray experiment. The ability to measure the expression of a whole genome under

different experimental conditions with the help of microarrays has led to the generation

of large scale gene expression data. Analysis of the data allows the discovery of groups

of genes that share similar expression profile. Moreover it is expected that a group of

genes responsible for one biological process will show similar expression profiles. Hence,

analysis of the genomic data allows us to identify groups of genes that are responsible for

different biological processes and also helps in discovery, validation and understanding

of various diseases.

Classification and clustering have been successfully used for more than a decade for

the analysis of expression data. Traditional clustering/classification algorithms [BDSY99,

ESBB98, THC+99, Cla99] cluster the genes based on their expression profiles under all

the conditions. These traditional algorithms work well for small data sets but fare poorly
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when number of experimental conditions is large. This is due to the fact that genes appear

to be at equal distance from each other when the number of conditions is large. All the

conditions are treated equally by these algorithms while computing similarity amongst the

genes whereas only a small subset of conditions affect the cellular processes [IFB+02].

Other conditions, which do not contribute to the cellular process, add to the background

noise. Thus grouping genes based on this small subset of conditions is more relevant in

the study of gene expression data.

Biclustering is the term coined by Hartigan [Har72] to group objects/genes based

on their expression profiles under a relevant subset of features/conditions and it was used

for the first time by Cheng and Church [CC00] for the analysis of gene expression data.

Biclusters are allowed to overlap, both on objects/genes as well as on features/conditions.

The technique thus, has been found very useful in the analysis of gene expression data

wherein genes responsible for one biological function are influenced by a subset of condi-

tions instead of the entire set of conditions and a gene (/ a condition) may be responsible

for more than one biological process.

Various biclustering algorithms exist in literature [IFB+02, PBZ+06, CC00, BDCKY03,

LW07]. They lack robustness and stability with respect to random initialization and in-

put parameters. Each algorithm aims to optimize different objective function leading to

different solutions. For an end user, who has no clue about which objective function is

best suitable for the application, the choice of a particular algorithm becomes difficult.

Ensemble techniques come to the rescue in such situation. The principle underlying the

ensemble techniques is to generate a set of models (also referred to as input schemes/input

solutions/biclustering solutions/partitions in literature) and aggregate them into a single

consensus model. Ensemble methods aim to provide solutions which are more robust to-

wards random seeds and input parameters. They have been proved to be more stable and

accurate than a single solution [SG02, DF03, WDH01, HY04, Die00, MO97] in the area

of supervised classification and unsupervised clustering.
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In this work, we extend the idea of ensemble techniques to improve the perfor-

mance of biclustering solutions. However, ensembling biclustering solutions is far more

challenging as compared to ensembling classification and clustering. This is due to the

following reasons, first being the overlapping nature of biclusters. The overlap may be on

genes, on conditions or on both. Another challenge arises from the fact that the attribute

set of different biclusters may be different as biclusters are defined by a subset of attributes

rather than the whole set. Also biclusters are non exhaustive in nature. Moreover different

biclustering solutions may contain different number of biclusters. Most of the work done

on ensembling clustering/classification assume that the clusters are non-overlapping and

all the solutions contain a fixed (sayk) number of clusters. Little work has been done

where the clusters are allowed to overlap and since these algorithms work on the entire

set of attributes, none of them needs to address the second challenge faced in biclustering.

Some work has been done for the ensemble of projected clustering and co-clustering so-

lutions. Wang et al. [WLDJ11] presented an ensemble solution for co-clustering wherein

they extract block-constant biclusters generalizing the grid-style partitions to allow dif-

ferent resolutions in different parts of the data matrix. A pair of biclusters may overlap

on objects or on features but not on both at the same time. Gullo et al. [GDT09] pre-

sented an ensemble solution for projective clustering wherein an object may belong to

more than one biclusters but the total sum of the membership is one thereby meaning that

if an object completely belongs to one bicluster it does not belong to any other. They

project the clusters on one dimension in a fuzzy way. Biclustering is different from these

problems/solutions wherein an object/feature may have a total membership more than one

and a bicluster is defined by more than one feature. Also, bicluster may overlap both on

objects and features simultaneously.

In this work, three approaches for ensembling biclustering solutions are proposed.

The first algorithm calledBiETopti [AG13a, AG17] uses optimization techniques to

generate consensus model.BiETopti assumes that the input biclustering solutions con-
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tain equal number of biclusters. In our second approach calledBiETclassi, we drop

this assumption and use classifiers to predict the labels. Both these algorithms involve

expensive steps of label correspondence and optimization (directly or indirectly). In the

third approach calledBiETmetaclus [AG13b], we do away with both of them and use

the concept of metaclustering instead. Mutual Information between biclusters is used to

form the metaclusters and a simple voting technique is used to form the consensus.

In a parallel work, Hanczar and Nadif (HN) [HN11] proposed the use of bagging

to improve the performance of biclustering schemes. They use bootstrapping on various

biclustering algorithms and use the concept of metacluster to ensemble them. All our

algorithms outperform their algorithm.

1.2 Problem Definition

Let G be a set ofN genes andC be a set ofd samples/conditions. LetE be anN × d

expression matrix where each row represents the expression of a gene underd samples.

E is subjected to a biclustering algorithm which delivers a biclustering scheme/solution

πi consisting ofki biclusters.πi = (BC1, BC2, ..., BCki
), BCj is a bicluster represented

by a tuple(Gj, Cj), Gj being a subset of genes andCj a subset of conditions. Note that

in general different biclustering schemes may contain different number of biclusters. Let

π1, π2, ..., πH be theH biclustering schemes so obtained and letλi : G × C → 2{0...ki}

be a function that yields a set of labels for each gene condition pair(gl, cr). Note that

since the biclusters may overlap both on genes and conditions, a (gene, condition) pair

may be assigned more than one label. Also, there may be a (gene, condition) pair which

does not belong to any bicluster. Such a pair is given label 0. Letλ1, λ2, ..., λH denote

theH labelings ofG × C . The problem of bicluster ensemble is to derive a consensus

function λ̂, which combines theH biclusterings and deliver a biclusterinĝπ to achieve

one or more of the following aims:

1. It improves the quality of the biclusters.
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2. It is more robust and stable than its constituent schemes.

1.3 Our Contribution

There are two main steps in any ensemble algorithm [VPRS11]:GenerationandCon-

sensus. Generation processdeals with generation or creation of a set of input partitions.

There are various ways to generate the input partitions. Partitions can be generated by

running different clustering/biclustering algorithms on same data set, or by running same

algorithm on different samples of same data set, or by executing the same algorithm a

number of times on the same data set, each time with different initialization or by chang-

ing the input parameters/threshold values. The purpose ofconsensus processis to inte-

grate the partitions obtained in the generation step.

We propose three approaches for bicluster ensemble. In the first two approaches

namedBiETopti andBiETclassi respectively, the schemes are generated by running a

biclustering algorithm several times with different initializations and the similar biclusters

are aligned using Hungarian algorithm [Kuh55]. InBiETopti, an objective function is

obtained that captures the dissimilarity of the new labels with the aligned biclusters both

for genes as well as for samples. The consensus is obtained by minimizing the value of the

objective function (i.e. dissimilarity). InBiETopti we assume that the number of biclus-

ters in all the biclustering solutions is same. This assumption is dropped inBiETclassi

wherein each bicluster is individually subjected to a classifier to refine labeling. How-

ever, label correspondence is still required to be able to do voting to generate the final

consensus.

Besides label correspondence, bothBiETopti andBiETclassi, involve optimiza-

tion (directly or indirectly) and hence are compute-intensive. In the third approach called

BiETmetaclus, all the biclusters provided by various biclustering solutions are collected

in a pool and metaclusters are formed based on the information they share about each
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other thereby eliminating both the expensive steps of label correspondence and optimiza-

tion. Voting is then used to generate the consensus model. This technique is similar to

HN as both form metaclusters of similar biclusters and consensus is formed by voting.

However it differs from HN, one in that the schemes are generated without bootstrapping

and secondly, Mutual Information is used in place of Jacquard Index. Mutual Information

has been considered to be a more general measure to capture linear as well as non linear

associations or dependencies [KSG04, SKD+02, BK00, MCA+98]. According to Priness

et al. [PMBG07], mutual information is resistant to outliers and missing data. Besides, it

is also robust towards noise.

The algorithms were tested both on synthetic as well as real data sets. All the algo-

rithms have been coded using MATLAB [MAT10]. LINGO software [LIN06] was used

to solve the optimization model. Quality of biclusters in case of synthetic data sets was

validated using Biclustering Error(BCE)/Error Rate and Agreement Score(AS). For real

data sets, validation was done using external biological information by determining the

functionality of the genes of the biclusters from Gene Ontology (GO) [ABB+00] and

common patterns (motifs) in the promoter regions of the genes of a bicluster with the

help of biological tools,DAVID (Database for Annotation, Visualization and Integrated

Discovery [HSL08] andRSAT(Regulatory Sequence Analysis Tool) available on line.

Experiments performed on synthetic data sets show that the biclusters produced by

all the three approaches were better than the input solutions. The results were also com-

pared with HN which was the only available bicluster ensemble algorithm. It was found

that biclusters produced by all the three algorithms were better than HN too. For real

data sets too, the biclusters produced were found to be biologically more significant than

the input biclusters. Experiments show thatBiETopti outperforms HN. It is also exper-

imentally seen thatBiETclassi andBiETmetaclus both outperformBiETopti both

in terms of time and quality. As a result, bothBiETclassi andBiETmetaclus also

beat HN in quality and time. As compared toBiETclassi, BiETmetaclus improves
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upon the time significantly butBiETclassi provides better biclusters as compared to

BiETmetaclus. Thus there is a tradeoff betweenBiETmetaclus andBiETclassi in

terms of time and quality.

1.4 Organization of Thesis

Rest of the thesis is organized as follows: In Chapter 2, an overview of the essential

concepts in biology are provided for better understanding of our work. Biclustering al-

gorithms, ensembling and related work is presented in Chapter 3. The first algorithm

for ensembling biclusters,BiETopti is explained in Chapter 4. Second algorithm for

ensembling biclusters,BiETclassi is presented in Chapter 5. The last algorithm for en-

sembling,BiETmetaclus is explained in Chapter 6. Finally, in Chapter 7 we present

concluding remarks to our work.
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Chapter 2

Biological Overview

In this chapter, we will review some concepts regarding microarray bioinformatics that are

key to identify the design requirements of gene expression analysis [APS06, MDPM08,

RJLS10, GSS91]. These concepts will help to understand the nature of input data and to

evaluate the results of the analysis process.

2.1 Cell

The basic unit of biological activity,Cell is the structural and functional unit of all living

organisms. It contains jelly like material called protoplasm and is surrounded by a cell

membrane. There are two components of protoplasm: nucleus that contains the genetic

material and cytoplasm that is the semi fluid material in which cell organelles like mito-

chondria, ribosomes etc. float. There are two types of cells depending on the presence of

nucleus i.e. prokaryotic and eukaryotic. Cells of primitive organisms (such as bacteria)

which do not have a nucleus are called prokaryotic cells and those of higher organisms

which have a well defined nucleus are called eukaryotic cells
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Organic molecules of Cell

There are four types of basic molecules present in a cell: Proteins, Carbohydrates, Lipids

and Nucleic acids. Proteins are the most diverse and complex macromolecules in the cell.

They are used for structure, function and information. They are made of linearly arranged

amino acids. There are twenty naturally occurring amino acids from which all proteins

are composed. Carbohydrates are source of energy for the cell. Lipids are hydrophobic

molecules and are constituent of the membrane of the cell and other cell organelles. DNA

and RNA are the nucleic acids that encode the genetic information for synthesis of all

proteins.

DNA - Deoxy-ribose Nucleic Acid

DNA contains the genetic information of a cell. It is a long sequence of nucleotides

as shown in Figure 2.1. These are molecules made of an organic base, a sugar group

i.e. deoxyribose and a phosphate ion. It is responsible for storage of information about

an organism’s inherited characteristics. DNA is the hereditary material in humans and

almost all other organisms. Genetic information from parent is transferred to its offspring

through DNA which is a set of blueprint needed to construct other components of cells,

such as proteins and RNA molecules.

Figure 2.1: DNA - Deoxy-ribose Nucleic Acid.

Every cell in a body has the same DNA. The information in DNA is stored as a code

made up of four chemical bases or nucleotides: A(adenine), T(Thymine), C(Cytosine) and
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G(Guanine). The DNA molecule consists of two strands. The bases in the two strands

are paired, so that A in one strand matches T in the other, and C matches G. This way the

sequence of one strand completely determines that of the other, complement strand. The

paired long strands are coiled into a spiral called a double helix. Each DNA strand has

a polarity, from head called the 5’ end and a tail called the 3’ end. DNA has a lagging

strand 3’-5’ and a leading strand 5’-3’. The 5’ end of a strand matches with a 3’ end of

the other strand. The non coding part i.e.introns separates the coding sequences called

exonsin the DNA of eukaryotes. The structure of gene is shown in Figure 2.2. It must

have Exons, start signals, stop signals and regulatory control elements. The average gene

with 7-10 exons spread over 10-16 kb of DNA.Open reading frame (ORF) is that part

Figure 2.2: Gene.

of DNA that codes for the formation of proteins.Upstream region anddownstream

region of the DNA is the portion of DNA near the head region (5’ end) and the tail region

(3’ end) respectively.

Property of DNA

DNA can replicate, or make copies of itself. Each strand of DNA in the double helix

unzips itself and serves as a pattern for duplicating the sequence of bases. This happens
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when cells divide because each new cell needs to have an exact copy of the DNA of the

old cell. Most genes contain the information needed to make functional molecules called

proteins.

RNA - ribose nucleic acid

RNA is a molecule which is chemically similar to DNA. Both RNA and DNA are made

up of a chain of nucleotide bases, but they have slightly different chemical properties.

RNA uses sugar ribose instead of deoxyribose in its backbone. RNA uses the base Uracil

instead of Thymine. RNA is a single stranded structure as shown in Figure 2.3. RNA per-

forms many functions. RNA plays a key role in the synthesis of various proteins in a cell.

In some lower organisms it also acts as the carrier of genetic material. There are three

Figure 2.3: RNA - Ribose Nucleic Acid.

main types of RNA molecules. The RNA that transfers DNA code to ribosome for trans-

lation is called messenger RNA (mRNA). Transfer RNA (tRNA) helps in bringing the

amino acids according to the ribosomes for protein synthesis. Ribosomal RNA (rRNA) is

major component of the protein synthesizing cell organelle called ribosome. Translation,

the second step in protein formation takes place in the cytoplasm. The mRNA interacts

with a specialized complex called a ribosome, which reads the sequence of mRNA bases.

Each sequence of three bases, called a codon, usually codes for one particular amino

acid. Amino acids are the building blocks of proteins. Figure 2.4 explains the flow of

information from DNA to protein.
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Figure 2.4: Flow of Information.

2.2 Gene and Gene Expression

Gene, the heredity factor, is the functional unit of DNA. The DNA segments that carries

genetic information are called genes. It is a stretch of DNA that encodes a protein or an

RNA molecule. Genes that code for protein, carry information which determine various

characteristics of an organism like eye colour, hair etc. and the non protein coding genes

code for RNA molecules.Phenotyperefers to the physical characteristics of an organism

i.e. what that organism looks like. The genetic encoding of its phenotype is called its

genotype. The genotype consists of gene combination for a trait (e.g. RR Rr rr) and

is shown in Figure 2.5. R is gene for red colour and is dominant whereas r the gene

responsible for white colour in flowers is recessive. The physical feature resulting from a
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genotype is the phenotype (e.g. Red , Red and White). Three genotypes yield only two

phenotypes.

Figure 2.5: Genotype: R-dominant gene r-recessive gene.

The Genome size varies from organism to organism. The yeast contains around

6000 genes whereas there are about 40,000 genes in human beings. All the genes are

not expressed when subjected to a condition. The process of turning genes on and off is

known as gene regulation. Gene regulation can occur at any point during gene expression,

but most commonly occurs at the level oftranscription (when the information from DNA

is transferred to mRNA).

Gene Expressionis the process by which :

• information from a gene sequence is manifested into structure and functions of a

cell.

• genotype of an organism is manifested into its phenotype.

We say that a genetic information in gene is expressed when the protein it codes

for, is synthesized and is responsible for the phenotype of an organism. Different genes

or the subsets of genes may be responsible for different phenotype of an individual. A

subset of genes responsible for the hair color may be different from the genes responsible

for the height of an individual. The genotype of an organism influences the phenotype.

The characteristics of an organism may be the result of the coordinated expression of

one or several genes and their interactions with the environment. The environmental

conditions influence the expression of genes. A gene may be highly expressed under

some conditions and may be suppressed under some other set of conditions. Transcription
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factors (TF) are proteins that bind to one (or more) specific sequence(s) of nucleotides

called theTranscription Factor Binding Site(s) (TFBS) on the promoter region of a

gene. Promoters are sequences of DNA that are the start signals for thetranscription

of mRNA. Terminators are the stop signals. The enzyme RNA Polymerase moves along

the strand of the DNA. As it encounters each DNA nucleotide, it adds the corresponding

complementary RNA nucleotide to a growing mRNA strand. Once the stop signal is

reached the newly constructed mRNA strand is released. Finally, it leaves the nucleus and

serves as a template for the synthesis of protein in the cytoplasm at the ribosome. During

Translation, message carried in mRNA is converted into amino acids and the synthesis

of the corresponding proteins at the ribosomes takes place. Amino acids are formed from

the four bases (A, U, C, G). The sequence of nucleotides in the mRNA determines the

sequence of amino acids in the synthesized protein. Each amino acid is actually a triplet

of three nucleotide bases called acodon. To code for the 20 essential amino acids a

genetic code must consist of at least a 3-base set (triplet) of the 4 bases. If one considers

the possibilities of arranging four things 3 at a time (4× 4× 4), we get 64 possible code

words, or codons (a 3-base sequence on the mRNA that codes for either a specific amino

acid or a control word). Three codons (TAA, TAG and TGA) indicate the end of a protein

sequence and are called the stop codons. The codon AUG represents methionine and is

also the translationalstart signal. All others code for a particular amino acid. Most of the

amino acids are encoded by more than one codon. The expression of a gene is controlled

and regulated by one or more TFs and their binding to the TFBS in the promoter regions

of the gene. Genes showing same expression profile or behaving similarly are said to be

co expressed. Such genes are regulated by the same set of TFs and hence have common

TFBSs. In other words genes having similar expression profiles, thus belonging to the

same bicluster, are considered to have acommon regulatory mechanism or signature

or motif in their promoter region [HZGD05]. Binding of Transcription factors with the

TFBS may be regulated by many conditions. In fact expression of one gene may be
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governed by the expression of another gene. Some genes may code for a protein which

in turn may act as a transcription factor and regulate the expression of some other genes.

The entire network is quite complex. Also, the gene to protein correspondence is not one

to one. There are genes that may code for more than one protein. Ideally measurement of

gene expression should be done by measuring the amount of protein produced. However,

it is often easier to measure one of the intermediate product like mRNA to infer the gene’s

expression level.

2.3 Microarray Experiments and Expression Matrix

A microarray is a small chip on which DNA molecules are attached in fixed grids. This

chip is made up of chemically coated glass, nylon membrane or silicon. To decipher the

logic of gene regulation in an organism, the simultaneous study of all the genes of an

organism is important [Lan05, ZWD+04, AMK00, Kau93]. A vast amount of expression

data has been collected for different organisms (healthy and diseased) during different de-

velopmental stages, changing environmental/chemical/clinical conditions, or at different

time points. Biologists are facing a problem in extracting meaningful information from

this humongous data. Development of efficient computational tools to analyse this data,

is the need of the hour. Scientists need to know the set of genes that are responsible for a

particular biological activity. The activities for which they may be interested may be the

formation of a protein, genes causing stress, high blood pressure, diabetes, heart ailment,

tumor or AIDS. In plants, these activities include reproduction, growth of a particular

part of a plant, photosynthesis and absorption of nutrients from soil. The biologists are of

view that the genes responsible for any activity get triggered under certain conditions and

must have some sort of association amongst themselves. Genes with similar expression

profile share something common in their regulatory mechanism was suggested by Vilo et

al. [VBJ+00] and Dhaeseleer et al. [DWFS98, DLS99]. The level of a certain gene can
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vary across the conditions. The conditions in the data matrix may be a time series during

a biological process (e.g., the yeast cell cycle) or a collection of different tissue samples

(e.g., normal versus cancerous tissues). If we are able to find the genes responsible for a

disease, then conditions that affect the expression of these genes can also be found out.

Also the other genes affected by these conditions can also be found out. Development

of efficient computational tools for the analysis of this huge amount of data, to be able

to extract biologically relevant information from it, is the most important requirement of

today. If one can extract fewer genes showing a pattern, association or correlation in their

expression values from the data, then the task of a biologist is greatly simplified.

Figure 2.6: Microarray Experiments: each experiment corresponds to a condition.

The gene expression data is usually displayed as a matrix. Various experiments are

performed wherein genome is subjected to different conditions as shown in Figure 2.6.

The behaviour of each gene under these conditions is stored in a matrix. Row in the

matrix corresponds to the expression profile of a gene and each column corresponds to a

sample or a condition [CST00a]. The conditions might be different individuals, different

experimental conditions of the organism, or different tissues (e.g., cancerous vs healthy)

from the same individual. Figure 2.7 shows an example of a gene expression matrix.

The (ij)th entry of the expression matrix represents the expression ofith gene underjth
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Figure 2.7: Gene Expression Data Matrix.

sample. The original data may contain noise and/or missing values that are a result of the

experimental procedure. Figure 2.8 shows the heat map of gene expression data of human

breast cancer.

Figure 2.8: Gene Expression Data.
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The motive behind studying the gene expression data is to study the functionality

of genes and that the genes with similar expression patterns are likely to be involved in

similar processes, and hence have similar functionality. Other than deducing function

of unknown genes, gene expression analysis has proven to be helpful to identify dis-

eases profiles, deciphering regulatory mechanisms, genotyping and drug developing. The

number of genes to be analysed is very large so computational aids are needed, and the

biological challenge should be formulated as a mathematical problem.
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Chapter 3

Preliminaries and Related Work

In this chapter we present biclustering algorithms that have been used in our work. This

is followed by the techniques used by researchers for generating ensembles in the area of

classification and clustering. We also discuss the work done to generate ensembles for

the closely related problems of co-clustering and projected clustering and discuss how

biclustering is different from them. Parallel work due to Hanczar and Nadif [HN11]

is also discussed here. Validation techniques used to assess the quality of biclusters are

explained subsequently and the details of the data sets used in the study are given at the

end.

3.1 Biclustering Algorithms

Several biclustering algorithms have been developed and applied to microarray analysis.

Amongst these the most popular are BIMAX, CC, ISA, OPSM and xMotif. Performance

of BIMAX deteriorates with increasing degree of overlap whereas OPSM is sensitive to

noise. Therefore we proceeded with the rest of the three algorithms and the details of

these is given here to get the insight of the same.
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3.1.1 Cheng and Church (CC) Algorithm

Cheng and Church were the first ones to propose an algorithm for biclustering. They

consider that biclusters follow an additive model and use a greedy iterative search to

minimize the mean square residue. The algorithm identifies biclusters one by one.

Let eij be the expression ofith gene underjth condition of the expression matrix E

with N genes andd conditions. Let (I,J) denote a bicluster where I and J are the subsets

of genes and conditions. Mean square residue score of the bicluster (I,J) is then defined

as:

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

(eij − eiJ − eIj + eIJ)2

whereeiJ is the row mean of rowi , eIj is the column mean of columnj andeIJ is the

overall mean over the entire submatrix.

The aim is to find a bicluster that minimizes the MSR. The procedure begins with

the whole matrix as a bicluster and then deletes rows and columns with the highest MSR

score as long asMSR(I, J) > δ, whereδ is the threshold parameter. Then rows and

columns with lowest score are added as long asMSR(I, J) < δ. To find more biclusters,

the already found bicluster is masked with random values and the process iterates till

desired number of biclusters is obtained.

3.1.2 xMOTIF Algorithm

Murali and Kasif[MK03] proposed an algorithm that uses discretized expression matrix

as input. The data is first discretized into a set of symbols by using a list of statistically

significant intervals for each row. They aim at finding conserved gene expression motifs

(xMOTIFs). xMOTIF (bicluster) is defined as a subset of genes that are simultaneously

conserved across a subset of the conditions. The expression level of a gene is said to

be conserved across a subset of conditions if the gene is in the same state in each of the
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conditions in this subset. The obtained set of rows and columns is then called a bicluster

if it contains more than anα fraction of all samples. The accuracy of the algorithm

depends on how the data is discretized. xMotif is able to find biclusters with constant

values and with constant rows. Data may contain several biclusters and the algorithm

finds the largest such bicluster. To identify other xMOTIFs, an iterative strategy wherein

samples satisfying each xMOTIF are removed, is adopted. Then the new largest xMOTIF

is searched. This process continues until all samples satisfy some xMOTIF.

3.1.3 Iterative Signature Algorithm (ISA)

Bergmann et al. [BIB03] introduced Iterative Signature Algorithm (ISA) that seeks bi-

clusters consisting of co-regulated genes and conditions. It extracts biclusters based on

the assumption that genes (/conditions) belonging to a bicluster exhibit similar expres-

sion profile with high expression values. The algorithm iteratively and alternatively com-

putes gene scores and condition scores. It generates two normalized copies of the gene

expression matrix, one with normalized rowsEG (normalized on genes) and one with

normalized columnsEC (normalized on conditions). Starting with an initial set of genes,

it computes the condition scores by taking the product ofEG with the gene vector which

has 1 for the selected genes and 0 otherwise. Conditions with scores above a threshold

(tc) are selected. It then computes the gene scores in a similar way by taking the product

of EC with the condition vector. Genes with scores above a threshold (tg) are selected.

The set of conditions and genes are refined by repeating the process iteratively unless

the convergence criterion is met. The algorithm is executed for a large number of input

seeds and the modules are reconstructed from the recurring fixed points using a proce-

dure resembling agglomerative clustering by fusing the solutions that were distinct but

very similar.
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3.2 Overview of Ensembling

Method of ensembling consists of two main steps [VPRS11]:generationof a set of input

models and the integration of all to obtain aconsensus.

Generation Process: The ensembling process begins with the generation of schemes.

In general, algorithms that provide more information about the data should be used for

the generation step. It is difficult to know beforehand which algorithm is appropriate for

the problem. It is recommended to make a diverse ensemble as more varied the set of

partitions are, more information is available for the consensus function. Aggregation of

same schemes is of no use. Various sources of diversity are possible which may be used

to generate schemes. Different schemes may be obtained by applying different biclus-

tering algorithms on the data set or by applying same biclustering algorithm on different

samples of data set (bagging and boosting). Schemes may be generated by applying same

algorithm on the data set by varying the threshold parameters/initialization.

Consensus Process: Once the schemes/solutions are generated, they have to be com-

bined to form the consensus. Two main approaches are used to generate a consensus

partition-object co-occurrenceandmedian partition.

In the first approach, consensus partition is obtained depending upon the frequency

with which two objects occur together or belongingness of an object to one cluster. One

way to do this isRelabeling and Voting[AK10, AK08, WDH01, DWH02, FB03] and an-

other is usingCo-association Matrix[ACN08, Fre01, FJ05]. The Relabeling and Voting

methods solve a label correspondence problem as a first step followed by voting to obtain

the final consensus. Heuristic such asbipartite matchinghas been used to solve the label

correspondence problem. The idea of co-association is used to avoid the label correspon-

dence problem and they map the partitions in the cluster ensemble into an intermediate

representation i.e. the co-association matrix which is formed by effectively merging the

similarity matrices of all the partitions. Using co-association matrix as the similarity mea-

sure between objects, consensus partition is obtained by applying a clustering algorithm.
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In themedian partitionapproach, an optimization problem is solved to obtain con-

sensus partition. The median partition is defined as the partition that maximizes the simi-

larity with all partitions in the cluster ensemble and is defined as:

π̂ = arg max
π

H∑
j=1

sim(π, πj)

wheresim(πi, πj) is a similarity between two partitionsπi, πj. The median partition

problem defined with the Mirkin distance [Mir96] has been proved to be NP-hard. Though

no theoretical results are known for other similarity measures, this method is considered

to be computationally expensive.

Other approaches to obtain consensus function includegraph and hyper graph algo-

rithms [SG02], Information theoretic approaches [TJP03], finite mixture model [TJP04],

LAC [DGM+07], genetic algorithms [YAL+06], NMF [LDJ07] and Kernel method [VPCMRS08].

These methods either fall under object co-occurrence or median partition.

3.3 Related Work

Ensembling techniques have been used successfully in the area of classification and clus-

tering to improve the quality of results. For the classification problems, bagging and

boosting [DF03, FB03, HN11, MJ87] have been used as standard techniques to generate

ensembles. Bootstrap aggregating, often abbreviated as bagging, involves having each

model in the ensemble vote with equal weight. Bagging trains each model in the en-

semble using a randomly drawn subset of the training set. Boosting is a general method

for improving the performance of a weak learner and involves incrementally building an

ensemble by training each new model instance to emphasize the training instances that

previous models mis-classified. The classifiers produced by the weak learners are then

combined into a single composite strong classifier in order to achieve a higher accuracy

than the weak learners classifiers would have had. In some cases, boosting has been
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shown to yield better accuracy than bagging, but it also tends to be more likely to over-

fit the training data. By far, the most common implementation of boosting is Adaboost,

designed by Schapire [Sch01].

In clustering, two approaches are largely used to design consensus functions. One

that establishes label correspondence between various partitions and then uses a con-

sensus function; second that eliminates the need of label correspondence and computes

the consensus function directly. Most of the work [Fre01, Fre02, HY04, KK98, SG02,

TJP03] falls in the second category whereas the works of [KG07, TMbJP04] fall in

the first category. Majority voting, co-association, fusion using procedure similar to ag-

glomerative clustering, graph partitioning, statistical and information theoretic methods

are several approaches that have been used in literature to design consensus functions

for clustering. A detailed survey of consensus functions for clustering can be found

in [GSIM09]. The adaptive clustering ensemble technique proposed in [TMbJP04] uses

sampling techniques to generate individual partitions of the ensemble. Optimization tech-

niques [GDT09, SMPX10] have also been used to generate ensembles for clustering and

projective clustering.

Three heuristics (CSPA, HGPA and MCLA) based on hyper graph partitioning are

proposed by Strehl and Ghosh [SG02] wherein clusters in all the schemes are represented

by hyperedges in a hyper graph. In the Cluster-based Similarity Partitioning Algorithm

(CSPA), a similarity matrix is formed from this hypergraph. It can be viewed as the ad-

jacency matrix of a simple graph having objects as the nodes and edge between nodes

has a weight equivalent to frequency of the two objects being grouped together in a clus-

ter. To obtain consensus partition, METIS [KK98] algorithm is used. The Hyper Graph

Partitioning Algorithm (HGPA) partitions the hyper graph directly, by eliminating the

minimal number of hyper edges. It assumes that all hyper edges have the same weights.

Hyper Graphs Partitioning package HMETIS [KAKS99] is used for the same. In the Meta

CLustering Algorithm (MCLA), related hyperedges are grouped in metaclusters and then
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collapsed. It assigns each object to the collapsed hyperedge in which it participates most

strongly. METIS algorithm is used to get metaclusters.

Topchy et al. [TJP04] proposed a probabilistic model of consensus using a finite

mixture of multinomial distributions in a space of constructed features. A combined

clustering is found as a solution to the corresponding maximum likelihood problem using

the Expectation Maximization algorithm.

Hybrid Bipartite Graph Formulation (HBGF) proposed by Fern and Brodley [FB04]

is also based on graph partitioning. They model the clusters and the objects in a bipartite

graph. There is an edge between an object node and a cluster node if the object belongs

to the cluster. METIS is then used for consensus generation.

Dudoit and Fridlyand [DF03] use relabeling and voting to ensemble partitions. A re-

labeling between two clusterings/partitions is done using the Hungarian algorithm. After

relabeling, voting is applied to determine cluster membership for each object.

Fred and Jain [FJ05] proposed to ensemble clustering results in a co-association

matrix. The associations between sample pairs are weighted by the number of times they

co-occur in a cluster. Consistent clusters are formed using a minimum spanning tree like

algorithm using the co-occurrence matrix. They use co-association values and apply a

hierarchical (single link) clustering to the co-association matrix. The idea of evidence

accumulation for combining the result of multiple clusterings is used.

Co-clustering and projective clustering are problems that are related to bicluster-

ing. Though researchers sometimes claim that co-clustering, projective clustering and

biclustering are all same but generally solutions for co-clustering do not allow clusters to

overlap on objects and features whereas solutions for projective clustering allows over-

lapping of features but not of objects. Wang et al. [WLDJ11] and Gullo et al. [GDT09]

have proposed ensemble techniques for these problems. Wang et al. presented an ensem-

ble solution for co-clustering wherein they extract block-constant biclusters generalizing

the grid-style partitions to allow different resolutions in different parts of the data matrix.
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A pair of biclusters may overlap on objects or on features but not on both at the same

time. Gullo et al. presented an ensemble solution for projective clustering wherein an

object may belong to more than one biclusters but the total sum of the membership is one

thereby meaning that if an object completely belongs to one bicluster it does not belong

to any other. They project the clusters on one dimension in a fuzzy way.

Biclustering is different from these problems/solutions wherein an object/feature

may have a total membership more than one and a bicluster is defined by more than one

feature. Also, bicluster may overlap both on objects and features simultaneously.

Review of HN algorithm

In a parallel work, Hanczar and Nadif [HN11] proposed the use of bagging to improve

the performance of biclustering schemes. HN generates schemes using bootstrapped data

and then combines the clusters into metaclusters using Jacquard Index as the similarity

measure. They then use voting to generate the consensus.

In another work, Hanczar and Nadif have used triclustering [HN12] to form bicluster

ensemble. They represent the collection of biclusters by a 3 dimensional binary matrix

with genes, conditions and all the biclusters on the three dimensions. A tricluster is

defined as a set of 1’s from the 3 dimensional matrix. The aim of the algorithm is to

find all the triclusters from this matrix. The algorithm suffers from the anomaly that it

does not fare well when the input schemes contain true biclusters. Moreover it looks

at local minima whereas the global minima could be far off. They have given a graph

showing that the loss function is non-increasing. However, these values of loss function

are absolute rather than relative. Also, they discuss that absolute loss function may lead to

a condition wherein all feature or examples be removed, and proposes the use of relative

values instead. On the other hand, values of relative loss function may not necessarily be

non-increasing.
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3.4 Evaluating the Results

Different quality measures are used for different scenarios depending on the data and on

the availability of ground truth [GVSS03] for traditional clustering. In case the ground

truth is known, statistical measures like Rand Index and Jacquard Index are used to ad-

judge the proximity of the output to the ground truth. These measures generally count the

pair of genes that behave similarly in the ground truth as well in the output i.e. they are

put in the same cluster by both or in different clusters by both. These measures cannot be

extended for biclustering solutions as a pair of genes may be put together in one bicluster

as well as be separated at the same time in two different biclusters. Measures used in

Pontes et al. [PGAR15] evaluate the quality of biclusters whereas in ensemble algorithms

we are interested in determining how close our final ensemble is to input biclustering so-

lution. We define a new measure wherein the result is aligned with the ground truth and

the similarity of the two is established using membership of the genes.

3.4.1 Statistical Validation of Biclustering Solutions : Synthetic Data

Set

In this section, we describe both types of evaluation metrics. We first define a statistical

measure Agreement Score (AS) that captures the overlapping nature of biclusters. Letπ

denote the biclustering solution that needs to be compared with the ground truthπG (the

implanted biclusters). Align the biclusters ofπ andπG ignoring the extra biclusters on

either side and calculate the ratio of number of agreements to the sum total of agreements

and disagreements for all pairwise aligned biclusters. Mathematically it can be written

as:

AS =
1

# of biclusters

∑
〈BCr,BCs〉∈Align(πG,π)

ars + brs

ars + brs + crs + drs
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where

Align(πG, π) = {〈BCr, BCs〉 : BCr, BCs are aligned biclusters of πG & π resp.}

ars is the number of genes belonging to both the biclustersBCr andBCs,

brs is the number of genes belonging to neither ofBCr andBCs,

crs is the number of genes that belong to the biclusterBCr but do not belong to the

biclusterBCs and,

drs is the number of genes that do not belong to the biclusterBCr but belong to the

biclusterBCs.

Thusars + brs denote the agreement between the two biclusters andcrs +drs denote

the disagreement between them.

Agreement score aims at finding the similarity between the two biclustering schemes.

It takes into account gene agreement between aligned biclusters of the schemes. As a gene

may contribute more than once to the similarity measure, Agreement score(AS) is nor-

malized by dividing it by the number of biclusters. The value of AS thus lies between 0

and 1. The value 0 indicating that the two biclustering schemes do not agree at all and 1

indicating that the two biclusterings are same.

We use another measure called BCE (biclustering error) that takes both genes and

conditions into account to validate biclustering solutions. The total number of misclassi-

fied values (g,c pairs) in the aligned biclusters amounts to the biclustering error between

two biclustering solutions. Letπ denote the biclustering solution that needs to be com-

pared with the ground truthπG (the implanted biclusters). Align the biclusters ofπ and

πG ignoring the extra biclusters on either side. BCE is calculated as follows

BCE =
∑

〈BCr,BCs〉∈Align(πG,π)

err(BCr, BCs)

30



where

err(BCr, BCs) = |Gr| |Cr|+ |Gs| |Cs| − 2 |Gr ∩Gs| |Cr ∩ Cs|

Gr, Gs are genes of BCr & BCs respectively ,

Cr, Cs are conditions of BCr & BCs respectively and

|X| denotes the cardinality of X.

More is the number of the genes and conditions that do not match with the classes in

which they ought to be, more is the error and less significant is the biclustering solution.

3.4.2 Biological Validation of Biclustering Solutions : Real Data Set

In the absence of ground truth, external measures are used for validation of biclustering

solutions. External validation methods like GO annotation term [LW07], metabolic path-

ways [BIB03], protein protein interaction network [PBZ+06] and patterns in promoter

regions [THC+99] are commonly used to assess the quality of biclusters. These methods

are based on the hypothesis that a group of genes that are related are responsible for some

biological function in a cell. We have used gene ontology terms and motif analysis to

validate our biclusters. Both these tools usep-value to find the significance of the biclus-

ters. We start with the explanation ofp-value followed by description of the tools used

for validation of biclusters.

p-value

Usingp-value we determine confidence in the result. It is done using hypothesis testing,

wherein we use a test statistics that indicates how strongly the data we observe supports

our decision. Thep-value was first formally introduced by Karl Pearson but its use in

statistics was popularised by Ronald Fisher.

The GO terms/motifs shared by the genes in the user’s list are compared to the back-

ground distribution of the annotation. It is the probability of seeingx or more genes from
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the input list ofn genes annotated to a particular GO term/motif, given the proportion of

genes in the whole genome annotated to that GO term/motif isF out of G. Specifically,

hyper geometric distribution is used to calculate the probability of observing at leastx or

more genes from a functional category from an input gene list of sizen given the back-

ground database consists ofG genes out of whichF belong to the functional category.

p-value is given by

n∑
j=x

(
F
j

) (
G−F
n−j

)
(G
n )

This is same as calculating the chance of getting at leastx successes and can also be

represented as

1−
x−1∑
j=0

(
F
j

) (
G−F
n−j

)
(G
n )

It is clear that smaller thep-value, more significant is the association of the particular

GO term/motif with the group of genes (i.e. it is less likely that the observed annotation of

the particular GO term/motif to a group of genes occurs by chance). There may be several

GO terms/motifs with differentp-values associated with an input set of genes belonging

to a bicluster. The bestp-value for each category was used to compare the biclusters.

Gene Ontology terms analysis using DAVID Toolbox

There are three Gene Ontologies (GO) that form a common language for annotation of

genes of different organisms from yeast to human. They relate genes with different bi-

ological processes across different species. The three GO ontologies are (i)Biological

processwhich include biological functions to which a gene or a gene’s products con-

tribute; (ii) Cellular component which includes complex sub-cellular structures, loca-

tions and macro-molecular complexes like RNA polymerases where the gene products

are active; (iii)Molecular function which defines the biochemical activities like carbo-
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hydrates binding and ATPase activity, of the gene products at molecular level. AGO

term is annotated to a gene group that is responsible for a particular biological function.

Figure 3.1: Snapshot of Functional Annotation tool of DAVID.

DAVID (Database for Annotation, Visualization and Integrated Discovery) is a free

online bioinformatics resource consisting of knowledge database and analytical tool that

helps in extracting biological relevance of a set of genes [HSL08]. The knowledge

database integrates major public bioinformatics resources. DAVID’s knowledge base

collects and integrates diverse gene annotation categories, assigns a centralized internal

DAVID identifier to each of them in a non redundant manner. The wide range of bio-

logical annotation coverage in the DAVID knowledge base enables a user’s gene ID to

be mapped across the entire database thus providing a broad coverage of gene associated

annotation. Also, if a significant portion (> 20%) of input gene IDs fail to be mapped to
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an internal DAVID ID, another DAVID tool, the Gene ID conversion tool starts up to help

in the mapping of such IDs.

The Functional Annotation tool of DAVID as shown in Figure 3.1 is used for en-

richment analysis of the gene terms annotated for the input gene set. The basic principle

behind the enrichment analysis is that if a biological process is active/abnormal then the

co-functioning genes have a higher chance of being selected as a relevant group. To de-

cide about the degree of enrichment, a certain background has to be setup for comparison.

As per Huang et al. [HSL08] larger backgrounds e.g. the total genes in the genome as a

background tends to give more significantp-values as compared to narrowed down set of

genes as background. DAVID has an automatic procedure to determine the background

Figure 3.2: Snapshot of Functional Annotation chart.

as the global set of genes in the genome on the basis of the user’s uploaded gene list. Thus
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normally a user does not have to setup a population background by itself. Uploading the

gene lists of the bicluster is the first step of analysis. DAVID maps a number of genes in

the uploaded list to the associated biological annotation i.e.gene ontology terms. It then

statistically examines the enrichment of gene members for each of the annotation terms by

comparing the outcome to the reference background usingp-values. Lower is thep-value,

more statistically significant is the bicluster. Annotation terms below a certain threshold

are reported as shown in Figure 3.2.

Motif analysis using RSA Toolbox

A set of genes showing similar behavior indicates that they are active or expressed to-

gether. A gene becomes active when atranscription factor (protein that accounts for

gene regulation) binds to aTranscription Factor Binding Site (TFBS) or motif in the

promoter region of the gene. Thus the genes responsible for one biological activity and

hence belonging to a bicluster are expected to have shared elements/patterns/motifs. In

order to further validate our biclusters we performed motif analysis of the genes of the

biclusters usingRegulatory Sequence Analysis Toolbox (RSAT). Given a set of input

genes, RSAT provides motifs, if any, in their regulatory region along with theirp-values.

RSAT consists of many modular tools for sequence retrieval and motif discovery. These

Figure 3.3: Motif analysis using RSAT.

tools can either be accessed separately or be connected in a pipeline. Two of these tools

areRetrieve Sequence Tool (RST)andMotif Discovery Tool (MDT) . Figure 3.3 sum-
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marizes the working of RSAT.

Figure 3.4: Snapshot of RSAT

Figure 3.5: Snapshot of motif discovery tool of RSAT.
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A set of genes along with the name of the organism is provided as an input to RST

as shown in Figure 3.4. RST provides the sequences of the input genes as output which is

then fed to MDT to extract the motifs. The output of MDT includes the motifs and their

correspondingp-values as shown in Figure 3.5. The value gives the statistical significance

of the motif detected. It is the expected number of times a similarity would be observed

by chance in a target database of random motifs.

3.5 Data Sets

We considered synthetic data sets used by Prelic et al. in [PBZ+06]. Details of the data

sets are given in Table 3.1.

Code-Data Set Size(N*d) # implanted biclusters(k)

DS1- Prelic(without noise) 110*110 11(overlapping)

DS2- Prelic(with noise) 100*50 10(non overlapping)

Table 3.1: Synthetic Data Sets.

The heat map of both the data sets of Prelic are shown in Figures 3.6 and 3.7.

We also worked on four real data sets for our study including a eukaryote, a plant

and homosapiens. Table 3.2 gives the details of the real data sets.

Saccharomyces Cerevisiae(Yeast) is a safe, easy to grow, short generation time or-

ganism [Hun93]. As yeasts are eukaryotes and are biochemically similar to humans, they

are quite popular with biologists for study purposes. Yeast data sets examines gene ex-

pression behaviour during various stress conditions. Expression profiles were normalized

by subtracting the mean of each profile and dividing it by the standard deviation across

the time points.

Arabidopsis Thalianais a common weed which undergoes the same processes of

growth, development, flowering etc. as most of the higher plants and yet has a small
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Figure 3.6: Heat map of overlapping data set of prelic-DS1.

Figure 3.7: Heat map of non overlapping data set of prelic-DS2.
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genome. It produces a large number of seeds and grows to a mature plant in only about six

weeks. The microarray is designed to examine the expression profile of identified small

coding genes and all annotated genes in various organs and various stress condition.

Diffuse Large B-cell Lymphomadata set contains the gene expression profiles of the

lymphomas of patients after chemotherapy [RWC+02].

Human Breast Cancerdata set aims at predictive gene signature for the outcome of

a breast cancer therapy [vtVDvdV+02]. The data set contains gene expression profiles of

the premalignant, preinvasive, and invasive stages of human breast cancer.

Organism Genes(N ) Conditions(d) source

(Short Name)

Saccharomyces Cerevisiae

(Yeast) 2993 173 www.tik.ee.ethz.ch/sop/bicat

Arabidopsis Thaliana

(A. Thaliana) 734 69 www.tik.ee.ethz.ch/sop/bicat

Diffuse Large-B-cell Lymphoma

(DLBCL) 661 180 www.bioinf.jku.at/software/fabia

Human Breast Cancer

(Breast Cancer) 1213 97 www.bioinf.jku.at/software/fabia

Table 3.2: Real Data Sets.
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Chapter 4

BiETopti - Biclustering Ensemble

Technique using Optimization

The chapter presents our first approach towards ensembling biclustering solutions named

BiETopti. Optimization technique has been used for the ensembling purpose. The algo-

rithm starts by generating a number of schemes using a biclustering algorithm. Different

schemes may assign different labels to similar biclusters. Thus the schemes are first

aligned so that similar biclusters in different schemes have the same label. A pool of

global labels is formed and a local label of an individual scheme is mapped to a global

label. The consensus is then obtained by minimizing the dissimilarity between the ob-

tained biclusters and the aligned input biclusters. Manhattan distance is used to capture

the dissimilarity. The objective function consists of two terms: one that minimizes the dis-

similarity amongst genes and the other to minimize the dissimilarity amongst conditions.

The sum thus minimizes the combined dissimilarity over genes and conditions.

Experiments were performed both on synthetic data sets and real data sets to show

the efficiency of our algorithm. The biclusters produced by our algorithm were found to

be better than the best of the input schemes. We also compared the biclusters produced by

our algorithm with those produced by Hanczar and Nadif (HN) [HN11] on their synthetic
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data set. It was found thatBiETopti not only outperformed HN in terms of quality but it

also takes lesser time. Details of our approach are presented in Section 4.1. Experimental

results are discussed in Section 4.2.

4.1 BiETopti

The algorithm works in three phases. Phase I deals with the generation of input schemes.

Schemes are generated by running a biclustering algorithm several times with different

initializations. In phase II, biclusters of two schemes are relabeled and aligned so that

similar biclusters in two schemes have the same label. A statistical measure was defined

by Krumpleman and Ghosh [KG07] to capture similarity between clusters. The measure

takes into account the non-disjointness of clusters but does so only amongst the genes.

To see the behaviour of this method on biclusters, it was applied on two biclustering so-

lutions as shown in Table 4.1. We observe that bicluster A1 is aligned with bicluster B1

and bicluster A2 is aligned with the bicluster B2 considering only the genes in common.

This alignment is shown in Table 4.2(a). However similarity between biclusters should

be computed by considering gene condition pairs. Thus, this measure is modified for our

algorithm to capture the overlap of genes as well as conditions. The modified measure

aligns A1 with B2 and A2 with B1 as shown in Table 4.2(b). Hungarian method is then

used to relabel the biclusters so as to align similar biclusters with each other. The con-

sensus is then generated using optimization in phase-III. Architecture of the approach is

given in Figure 4.1.

Review of Hungarian Algorithm

Hungarian method is a combinatorial optimization algorithm that solves assignment prob-

lem. Assume that there are N workers to whom N jobs are to be assigned. For each pair

(worker, job) we know the salary that is to be paid to the worker to perform the job.
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BC# Group of Biclustering Biclustering

Solution1 Solution2

1 genes 1 2 3 4 5 1 2 3

conditions 1 2 3 4 5

A1 B1

2 genes 4 5 6 4 5

conditions 4 5 1 2

A2 B2

Table 4.1: Sample Biclustering Solutions

Biclustering Biclustering

Solution1 Solution2

1 2 3 4 5 1 2 3

1 2 3 4 5

A1 B1

4 5 6 4 5

4 5 1 2

A2 B2

Biclustering Biclustering

Solution1 Solution2

1 2 3 4 5 4 5

1 2 3 1 2

A1 B2

4 5 6 1 2 3

4 5 4 5

A2 B1

Table 4.2: Alignment using a) Krumpleman and Ghosh method. b) Modified form of
Krumpleman and Ghosh method.
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The goal is to find the lowest cost solution of getting all the jobs done by assigning each

worker to exactly one job. The Hungarian algorithm does this by solving a minimum

weight bipartite matching.

4.1.1 Some Notations

In this section, some notations used in the chapter are presented.

Definition 4.1.1 (Biclustering Solution/Input Scheme)A biclustering solutionπ de-

fined over expression matrixE is a triplet (k,X, Y ):

1. k is the number of biclusters,{1 . . . k} denote the set of bicluster labels.

2. X : G× {1 . . . k} → {0, 1} is a function whereX(g, l) represents whether a gene

g belongs to the bicluster labeledl.

3. Y : C ×{1 . . . k} → {0, 1} is a function whereY (c, l) represents whether a condi-

tion c belongs to the bicluster labeledl.

For the ease of presentation we will usexgl to denoteX(g, l) and ycl to denote

Y (c, l).

Definition 4.1.2 (Collection of Input Schemes)Π is a collection ofH input schemes,

Π = {π1 . . . πH}, where each ofπi = (ki, X
i, Y i) is a biclustering solution/ input scheme.

Since the biclusters may overlap both on genes and conditions, a gene (/ condition) may

be assigned more than one label. Also, there may be a gene (/ condition) which does not

belong to any bicluster, such a gene (/ condition) is assigned a special label0. Hence, an

extra bicluster with label0 is added in each input scheme. Note that the number of the

biclusters increase by1 in each scheme. Thus without loss of generality, we can assume

that in each scheme, each gene and each condition belongs to at least one bicluster.
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Definition 4.1.3 (Global Label Set) is a setL of labels{0, . . . , (
∑H

i=1(ki + 1)− 1)}.

In general, different biclustering schemes may contain different number of biclusters.

However, we have considered schemes with equal number of biclusters i.e.ki = k ∀ i.

The problem of bicluster ensemble is to derive a consensus that combines theH biclus-

tering solutions and delivers a biclustering solutionπ̂ = (k, X, Y ).

4.1.2 Phase-I: Scheme Generation

Algorithms yielding maximum information about the data are preferred. Aggregation of

similar schemes is of no use. Schemes that are to be ensembled must be different as it adds

to diversity which is essential for ensembling. To ensure diversity, different schemes may

be produced by applying different biclustering algorithms on the same data set. Applying

same biclustering algorithm on bootstrapped data also create different schemes. Schemes

may be obtained by applying same algorithm on the same data by varying the threshold

parameters/initialization.

Figure 4.2: Heat Map of Toy Data.

We generate schemes without bootstrapping wherein a biclustering algorithm is ap-

plied on the data set several times, each time changing the parameters/initialization. The

schemes generated are represented in the form as described in Section 4.1.1.
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The algorithm is explained with the help of a toy data containing6 genes and6

conditions. Figure 4.2 shows the heat map of the toy data and the two possible biclustering

schemes of the same are shown in Table 4.3.

BC# Group of Biclustering Biclustering

Solution1 Solution2

1 genes 1 2 3 4 2 3 4

conditions 1 2 3 4 2 3 4

2 genes 3 4 6 1 2 3

conditions 3 4 5 6 1 2 3

3 genes 3 4 4 5 6

conditions 3 4 4 5 6

Table 4.3: Two Biclustering schemes of Toy Data.

4.1.3 Phase II: Label Correspondence

In the absence of labeled data, different schemes assign different labels to genes and

conditions. Therefore, we need to establish correspondence between the labels so as

to align similar biclusters of different input schemes. One of the schemes is used as a

reference and biclusters of other schemes are relabeled so that they are aligned with the

similar biclusters of the reference scheme. Biclusters belonging to different solutions

having maximum overlap with each other need to be aligned and given the same label.

This was the intuition underlying the probability based alignment function proposed by

Krumpleman and Ghosh [KG07] for clustering solutions. We start with review of the

alignment function and suggest how it can be modified to suit the need of biclustering

solutions.
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Review of Krumpleman and Ghosh’s (KG) alignment function

Krumpleman and Ghosh are the first ones to define a statistical measure to capture the

overlap between two clusters, wherein a clusterer may produce non-disjoint clusterings, to

establish cluster correspondence before applying majority voting to design the consensus

function for the ensemble. The measure they used is able to capture the overlap for genes.

The function defined by them measures the probability of an event occurring by chance.

It is defined as the total probability of seeing the observed overlap(s) or greater between

the two clusters. This value essentially measures the likelihood of the observed overlap

being a random event, hence a small value indicates a small probability of seeing the

observation at random and show higher similarity.

t=min(d1,d2)∑
t=s

P (t) where P (s) =

(
N
d1

)(
d1
s

)(
N−d1
d2−s

)(
N
d1

)(
N
d2

)

Hered1, d2 are number of objects in clustersC1, C2 respectively.s is number of

objects overlapping betweenC1 andC2 andN is total number of objects in data set.

The above formula calculates the number of ways of choosing the observed overlap

s out of the total number of ways in which two clusters of sizesd1 andd2 respectively

can be formed. The denominator represents the number of ways of choosing two clusters

of sizesd1 andd2 respectively and the numerator finds the number of ways of choosing

the observed overlaps. It is actually the product of three terms as explained here: Count

number of ways in whichd1 1′s can be selected fromN , followed by the number of ways

to choose thes overlapping points from thesed1 1′s and last term counts the number of

ways to place remaining1′s in C1 such that they do not overlap with1′s in C2.
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(gene,condition) Biclustering Scheme1 Biclustering Scheme2

pair Labels Labels

BC1 BC2 BC3 BC1 BC2 BC3

(1,1) 1 0 0 0 1 0

(1,2) 1 0 0 0 1 0

(1,3) 1 0 0 0 1 0

(1,4) 1 0 0 0 0 0

(1,5) 0 0 0 0 0 0

(1,6) 0 0 0 0 0 0

(2,1) 1 0 0 0 1 0

(2,2) 1 0 0 1 1 0

(2,3) 1 0 0 1 1 0

(2,4) 1 0 0 1 0 0

(2,5) 0 0 0 0 0 0

(2,6) 0 0 0 0 0 0

(3,1) 1 0 0 0 1 0

(3,2) 1 0 0 1 1 0

(3,3) 1 1 1 1 1 0

(3,4) 1 1 1 1 0 0

(3,5) 0 1 0 0 0 0

(3,6) 0 1 0 0 0 0

(gene,condition) Biclustering Scheme1 Biclustering Scheme2

pair Labels Labels

BC1 BC2 BC3 BC1 BC2 BC3

(4,1) 1 0 0 0 0 0

(4,2) 1 0 0 1 0 0

(4,3) 1 1 1 1 0 0

(4,4) 1 1 1 1 0 1

(4,5) 0 1 0 0 0 1

(4,6) 0 1 0 0 0 1

(5,1) 0 0 0 0 0 0

(5,2) 0 0 0 0 0 0

(5,3) 0 0 0 0 0 0

(5,4) 0 0 0 0 0 1

(5,5) 0 0 0 0 0 1

(5,6) 0 0 0 0 0 1

(6,1) 0 0 0 0 0 0

(6,2) 0 0 0 0 0 0

(6,3) 0 1 0 0 0 0

(6,4) 0 1 0 0 0 1

(6,5) 0 1 0 0 0 1

(6,6) 0 1 0 0 0 1

Table 4.4: Membership Matrices.
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Modifying the KG’s alignment function for biclusters

Borrowing the notation from them, we extended their definition to take into account the

joint overlapping of biclusters on genes and conditions. LetBCi andBCj be the biclus-

ters ofπref andπl respectively. We define Bicluster Similarity Index (BSI) to compute the

similarity betweenBCi andBCj. Let N
′
be the total number of(g, c) pairs. Letd1 and

d2 be the number of(g, c) pairs inBCi andBCj respectively, i.e.d1 = (
∑

g xgi)(
∑

c yci)

andd2 = (
∑

g xgj)(
∑

c ycj). Let s be the number of(g, c) pairs common betweenBCi

andBCj. The probability of the observed overlap beings is then given by

Pij(s) =

(
N

′

d1

)(
d1
s

)(
N

′−d1
d2−s

)(
N ′

d1

)(
N ′

d2

) =

(
d1
s

)(
N

′−d1
d2−s

)(
N ′

d2

)
The above expression is the hyper-geometric distribution evaluated ats. Total prob-

ability of seeing at leasts overlapping(g, c) pairs is then

BSIij =

min(d1,d2)∑
t=s

Pij(t)

This can be obtained by taking a scalar product of the corresponding columns (third

dimension) of the binary membership matrices of the two schemes. Binary membership

matrixM is defined as a three dimensional matrix with genes, conditions and labels on the

three dimensions. Hence each membership matrix is of sizeN · d · k for an input scheme

with k biclusters. The two binary membership matrix for the two schemes of the toy

example are shown in Table 4.4. Using the notation of a 3D matrix,mijr denotes whether

the genegi and the conditioncj belong to therth bicluster or not. LetMref andMl be two

binary membership matrices for the input schemesπref andπl (l = 1 . . . H) respectively.

The objective is to align the third dimension ofMl with that ofMref such that they have

maximum match. Hamming distance appears to be the most reasonable choice. However,

it does not account for the different densities of 1’s in different columns.

Clearly, higher the overlap, lower is the value of BSI. We compute the pairwise

BSIij for all pairs of biclusters with one bicluster taken fromπref and the other fromπl.
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The calculation of BSI for the first bicluster of the two schemes of toy data is shown

here: (Refer to BC1 column of both the schemes in Table 4.4.)

According to the formula

BSIij =

min(d1,d2)∑
t=s

Pij(t)

Substituting the valuesN
′
=36, d1 = 16, d2 = 9, s=9

=
9∑

t=9

Pij(t)

and Pij(s) =

(
N

′

d1

)(
d1
s

)(
N

′−d1
d2−s

)(
N ′

d1

)(
N ′

d2

) =

(
d1
s

)(
N

′−d1
d2−s

)(
N ′

d2

) ∴ =

(
16
9

)(
20
0

)(
36
9

) = .00012

We then define a bipartite graph with biclusters ofπref as vertices on one side and

biclusters ofπl as vertices on other side.BSIij is the weight of the edge betweenith

bicluster ofπref andjth bicluster ofπl. This is shown in Figure 4.3.

Figure 4.3: BSI between2 schemes for the toy data. Circles correspond to biclusters in a
scheme.

Hungarian method is used to compute minimum weight bipartite matching to obtain

the new labels(X
′
Y

′
) for the biclusters ofπl. This is illustrated in Figure 4.4. Step by

step procedure for same is given in Algorithm 1.
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Figure 4.4: Labels before and after applying Hungarian algorithm.

Input : (X1Y 1), (X2Y 2), . . . , (XHY H) : old labels ofH input schemes

Output : (X1′Y 1′), (X2′Y 2′), . . . , (XH′
Y H′

) : new labels ofH input schemes

/* without loss of generality assume πref is π1. */

for l = 2 to H do

for i = 1 to k do

for j = 1 to k do
calculateBSIij between theith and thejth biclusters ofπref andπl

biclustering schemes respectively;

end

end

use Hungarian algorithm withBSIij as the edge weights and relabel the

biclusters ofπl;

end

Algorithm 1: Label Correspondence.
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4.1.4 Phase III: Generating Consensus

In this section we present our main contribution. We formulate the problem of generating

a consensus from the input schemes as an optimization problem. We start by mapping the

local labels to global labels as described below:

Consider therth bicluster inith input scheme. The value ofr ranges between 0 andk

whereasi takes values from1 to H. The bicluster gets the global labelh whereh satisfies

i = b h/(k + 1)c+ 1, r = h mod (k + 1). Figure 4.5 shows the mapping of local labels

to global labels.

Figure 4.5: Local labels mapped to global labels (pairs (r, h) : (local labelr, global label
h)).

The gene-wise representation of the collection of input schemes is then given by the

following N × 1 vectors

δh =< δg1h, δg2h, . . . δgNh > where δgjh = xi
gjr

and the condition-wise representation is given by the followingd× 1vectors

µh =< µc1h, µc2h, . . . µcdh > where µcjh = yi
cjr

Theδ andµ for the toy data are given in Tables 4.5 and 4.6 respectively. We next
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X1 X2

h → 0 1 2 3 4 5 6 7

Genes↓ r = 0 r = 1 r = 2 r = 3 r = 0 r = 1 r = 2 r = 3

1 0 1 0 0 0 0 1 0

2 0 1 0 0 0 1 1 0

3 0 1 1 1 0 1 1 0

4 0 1 1 1 0 1 0 1

5 1 0 0 0 0 0 0 1

6 0 0 1 0 0 0 0 1

Table 4.5: Bicluster Collection Representationδ for the example (r is local label,h is
global label).

Y 1 Y 2

h → 0 1 2 3 4 5 6 7

Conditions↓ r = 0 r = 1 r = 2 r = 3 r = 0 r = 1 r = 2 r = 3

1 0 1 0 0 0 0 1 0

2 0 1 0 0 0 1 1 0

3 0 1 1 1 0 1 1 0

4 0 1 1 1 0 1 0 1

5 0 0 1 0 0 0 0 1

6 0 0 1 0 0 0 0 1

Table 4.6: Bicluster Collection Representationµ for the example.
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present the formulation of our problem. Letxgr be an indicator variable that denotes

whether geneg gets the labelr or not. Similarly, letycr be an indicator variable that

denotes whether conditionc gets the labelr or not. The objective is to assign labels to

genes and conditions so as to minimize the dissimilarity of the obtained biclusters from

the corresponding aligned biclusters. The objective function consists of two terms, one

for dissimilarity over genes and the other to capture the dissimilarity over conditions. We

obtain the new labelingxgr andycr so as to

Minimize∑k
r=0

∑
h:hmod(k+1)=r

∑gN

g=g1
|xgr − δgh|+

∑k
r=0

∑
h:hmod(k+1)=r

∑cd

c=c1
|ycr − µch|

subject to∑gN

g=g1
xgr ≥ 1 ∀0 ≤ r ≤ k (1)∑cd

c=c1
ycr ≥ 1 ∀0 ≤ r ≤ k (2)∑k

r=1 xgr ≥ 1 ∀g ∈ G (3)∑k
r=1 ycr ≥ 1 ∀c ∈ C (4)

Note that|xgr − δgh| contributes1 to the dissimilarity over genes ifxgr is not in agreement

with δgh i.e. (if xgr =1 andδgh =0) or (if xgr =0 andδgh =1); first condition corresponds

to the case wheng gets the labelr in our solution butg does not get labelr in one of the

input schemes. The second condition corresponds to the case wheng is not assigned the

label r by our solution but it got labelr by one of the input schemes. And|xgr − δgh|

contributes0 to the dissimilarity over genes ifxgr is in agreement withδgh i.e. if bothxgr

andδgh are 1 or 0. Thus for every geneg,
∑

h |xgr − δgh| counts the number of schemes

with which our solution does not agree ong and
∑

g

∑
h |xgr − δgh| represents the total

disagreement of our solution with the input schemes over all genes.

Similarly |ycr − µch| contributes1 to the dissimilarity over conditions ifycr is not in

agreement withµch i.e. (if ycr =1 andµch =0) or (if ycr =0 andµch =1). First condition
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corresponds to the case whenc gets the labelr in our solution butc does not get label

r in one of the input schemes. The second condition corresponds to the case whenc is

not assigned the labelr by our solution but it got labelr by one of the input schemes.

|ycr − µch| contributes0 to the dissimilarity over conditions ifycr is in agreement with

µch i.e. if bothycr andµch are 1 or 0. For every conditionc,
∑

h |ycr − µch| counts the

number of schemes which agree with our solution onc and
∑

c

∑
h |ycr − µch| represents

the total agreement of our solution with the input schemes over all conditions.

The constraints (1) and (2) make sure that each bicluster has at least1 gene and

1 condition. The constraints (3) and (4) make sure that each gene and each condition

belongs to at least one bicluster. The constraints are linear whereas the objective function

contains absolute terms (modulus) which can be replaced with squares of the terms and

solved as a quadratic program. Though in general the problem is hard but we solve it

as a relaxed LP as our coefficient matrix is totally unimodular. A matrix A is totally

unimodular if every square submatrix has determinant 0, 1, or -1.

4.2 Experimental Results

In this section, we present experimental evaluation of our approach. We first compare the

performance ofBiETopti with HN on dataset used by them and show thatBiETopti

outperforms HN both in terms of time and quality. We then present the results ofBiETopti

on synthetic data set of Prelic and real data sets.

4.2.1 Methodology

To compare the performance of our approach with HN, we used their code (provided to

us by the authors on our request) and data set (DS0) used by them. DS0 has200 genes

and100 conditions with two overlapping biclusters implanted in it. The implementation

of HN code is in R environment [R C12]. Our approach,BiETopti is implemented in
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MATLAB version 7.10 (R2010a) on Intel Core i5-2430M CPU @2.40 Ghz with4GB

RAM using Windows 7 Home Basic Operating System and for the optimization part,

LINGO [LIN06] tool was used.

4.2.2 Comparison with HN

First we compare the performance ofBiETopti with that of HN on bootstrapped data.

CC algorithm was used to generate the input schemes on bootstrapped samples of data set

(DS0). The ensemble formed is compared with the ‘Single’ to adjudge the quality of the

ensemble where ‘Single’ is the scheme obtained when algorithm CC is run on DS0.

Figure 4.6: Single versus (HN and BiETopti) on DS0 using CC.

Two setups, one with50 bootstrapped samples of the data set and other with200

samples of the data set (as defined in their paper), were used for the purpose. Figure 4.6

compares the biclustering error (misclassified(g, c) pairs) of the biclusters generated by

CC (single) and that of ensemble ofBiETopti and ensemble of HN. The time taken

by the two algorithms is also shown in the figure. The figure shows thatBiETopti not

only improves upon the biclustering error over the ‘Single’ but it also outperforms HN.

In case of50 samples, the performance ofBiETopti is significantly better than that of

HN. Though the improvement in the quality of biclusters, in case of200 samples, is

marginal,BiETopti beats HN in terms of time here significantly. Thus,BiETopti not
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only provides better biclusters than HN, it also saves hugely on time as compared to HN.

Next, we compare the performance of the two approaches when input schemes are

generated by bootstrapped samples against those that are generated on non-bootstrapped

data. Diversity in input schemes is obtained naturally when CC is run on bootstrapped

data. But on non bootstrapped data, running CC with different initial values does not

provide much heterogeneity in the input schemes. Thus xMotif and ISA were used for the

purpose instead of CC. ISA was integrated with their code using ISA2 package [BIB03,

CKB10].

Two sets of experiments were performed, one with xMotif and the other with ISA.

In each set following experiments were performed:

• HN was executed on bootstrapped samples.

• BiETopti was executed on bootstrapped samples.

• BiETopti was executed on non bootstrapped samples also.

Figure 4.7 shows the biclustering error for all the three experiments on both the sets.

Figure 4.7: Biclustering error of HN and BiETopti (bootstrapped and non bootstrapped)
for 2 setups using ISA and xMotif.

Following inferences can be drawn from the figure :
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• BiETopti on bootstrapped as well as non bootstrapped data outperforms HN espe-

cially with ISA.

• BiETopti performs better on non bootstrapped data than on bootstrapped data.

Prelic et al. [PBZ+06] in their comparative study of different biclustering methods for

gene expression have shown that ISA performs better than other biclustering algorithms.

They focused on meaningfulness of the biclusters produced by different algorithms. They

wanted to see if any algorithm had an edge over the other. According to them there was

significant difference among these algorithms so far as performance is concerned. They

show that ISA is capable of providing functionally enriched biclusters that are biologically

significant. Multiple biclusters of both constant and coherently increasing values can be

found using ISA. On the other hand, both CC and xMotif algorithms find large biclusters

with constant expression levels and therefore not necessarily contain interesting patterns,

e.g. in terms of co-regulation. The performance of CC and xMotif is significantly lower

Figure 4.8: Comparing the performance of ISA and xMotif.

than that for the other biclustering methods. This was experimentally endorsed by our

experiments also.

We next compare the performance ofBiETopti and HN w.r.t. xMotif and ISA in

Figure 4.8. As the range of values of biclustering errors in the two cases is significantly
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different, improvement percentage over ‘Single’ is used as a parameter to compare the

performance. It was observed that performance ofBiETopti as well as HN with ISA is

better as compared to that with xMotif in all the three experiments.

Thus here on, we focus on ensembles of schemes produced using ISA on non boot-

strap data.

4.2.3 Results on Synthetic Data Sets

Having gained confidence in our approach on the data sets used by HN, we performed

experiments on the benchmark data sets (DS1 and DS2) of Prelic et. al. using ISA as the

biclustering algorithm. DS1 and DS2 are two distinct data sets: one having overlapping

biclusters but no noise and the other having noise added to the data with non overlapping

biclusters. Input schemes were generated by running ISA on the expression data20 times,

each time with100 gene seed vectors. Genes and conditions not assigned to any bicluster

by any of the input schemes were assigned a dummy label 0. This was done to ensure

the feasibility of the input.BiETopti was then executed to generate the ensemble. The

whole procedure is repeated20 times and the results are averaged over the runs.

Two sets of experiments were conducted on each data set. In the first set, the thresh-

olds (tg, tc) were fixed and the schemes were generated by running ISA with different

random gene seed. In the second set of experiment,tg was varied keeping both the ran-

dom gene seed andtc fixed. The value oftg was varied from[−2.4, +2.0] in steps of0.2.

It was observed that fortg values ranging from[0.6, 1.6] schemes with biclusters identical

to the implanted biclusters were obtained whereas schemes obtained fortg varying from

[−2.4,−0.8] biclusters consisted essentially of all the genes and all the biclusters eventu-

ally reduced to a single bicluster after preprocessing. Ensembling such biclusters was of

no help, so we focused our study ontg varying from[−0.6, 0.4] and[1.8, 2.0].

We compared the performance of the algorithm with the best of the input schemes

using biclustering error (BCE) and agreement score (AS). The best was obtained from the
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400 schemes (20 runs of 20 schemes each).

Table 4.7 - 4.8 present the results on data set (DS1) for the first set of experiments

(of varying random gene seed and having fixedtg, tc) using both evaluation criteria i.e.

BCE and AS. The tables show that our approach improves upon the best of the input

schemes both in terms of BCE and AS.

SchemesBest BiETopti

tg, tc ↓

-0.50 , 2 3402 2540

-0.40 , 2 3830 3002

-0.35 , 2 3618 2652

1 , 1 5218 3580

0 , 1 5860 3768

Table 4.7: Best of input schemes vs BiETopti on DS1 for the first set of experiments using
BCE.

SchemesBest BiETopti

tg, tc ↓

-0.50 , 2 0.82 0.82

-0.40 , 2 0.77 0.79

-0.35 , 2 0.90 0.91

1 , 1 0.69 0.70

0 , 1 0.54 0.56

Table 4.8: Best of input schemes vs BiETopti on DS1 for the first set of experiments using
AS.

The second experiment was performed for varying values of (tg). In this experiment

also,BiETopti provides better biclusters than best of the input schemes. The results are

displayed in Table 4.9.
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Evaluation Criteria Best BiETopti

BCE 3180 2752

AS 0.81 0.82

Table 4.9: Best of input schemes vs BiETopti on DS1 for the second set of experiment.

Effect of noise

Noisy data set (DS2) was used to study the impact of noise on the performance ofBiETopti.

Both the experiments were repeated on (DS2).

SchemesBest BiETopti

tg, tc ↓

.90, 1 2865 2431

1, .5 3012 2650

-.35,2 4187 3256

Table 4.10: Effect of noise on BiETopti (data set DS2) for the first set of experiments
using BCE.

Table 4.10 shows the results for the first set of experiments using BCE as the evalu-

ation method. Table 4.11 shows the Agreement Score (AS) of the results on DS2 for the

first set of experiments.

SchemesBest BiETopti

tg, tc ↓

.90, 1 0.87 0.88

1, .5 0.77 0.78

-.35, 2 0.50 0.51

Table 4.11: Effect of noise on BiETopti (data set DS2) for the first set of experiments
using AS.
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The results for the second set of experiment are shown in the Table 4.12 using both

the evaluation methods. The tables show thatBiETopti was able to improve the per-

formance of the best of input schemes even in presence of noise using any of the two

evaluation measures.

Evaluation Criteria Best BiETopti

BCE 2588 2312

AS 0.92 0.92

Table 4.12: Effect of noise on BiETopti (data set DS2) for the second set of experiment.

Effect of number of schemes to be ensembled

To study the effect of number of schemes on the ensemble, a large number of schemes

were generated by varying (tg,tc). tg was varied from0.1 to 1.0 in step of0.1. Similarly

tc was varied from0.1 to 1.0 in step of.1 to obtain100 schemes.

#schemes BCE of Improvement over the Best Time

ensembled ensemble

10 2928 179 15.1

20 2900 199 30

50 2889 100 40.1

100 2867 70 75

Table 4.13: Effect of number of schemes.

Results were taken by ensembling varying number of schemes out of these100

schemes.4 sets of experiments were performed withBiETopti by picking all the schemes

(100), half of the schemes (50), one fifth of the schemes (20) and one tenth of the schemes

(10). Table 4.13 shows the biclustering error and the time taken for these experiments.
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Figure 4.9 shows the performance ofBiETopti with the varying number of input

schemes. In all the cases the quality of the biclusters improves upon the best of the input

schemes. It was observed that the improvement in performance increases when the num-

ber of schemes are increased up to20 beyond which the improvement starts decreasing as

shown in the figure.

Figure 4.9: Improvement of biclustering error and time comparison to show effect of
number of schemes.

At the same time, increasing the number of schemes beyond20 increases the time

substantially. Thus, for the rest of the experiments we fixed number of schemes to be20.

Effect of changing the reference scheme

We also studied the impact of changing the reference scheme on the performance. It was

observed that there was no significant change in the accuracy of the biclusters on changing

the reference scheme.

4.2.4 Results on Real Data Sets

Experimental studies were performed on the data sets of Saccharomyces Cerevisiae, Ara-

bidopsis Thaliana, DLBCL, and Human Breast Cancer. We generated input schemes by

running ISA, each time with hundred different gene seed vectors. Sizes of the biclusters

were kept to be comparable to eliminate the effect of size of biclusters on thep-values.
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The biclusters produced byBiETopti were evaluated using DAVID and RSAT tool.

Table 4.14 shows the biclusters ofBiETopti along with their aligned input biclus-

ters for all the data sets. The tables show the−log p-values of GO terms of top10

biclusters produced byBiETopti. To compare with the input schemes,−log p-value of

the best3 of the aligned biclusters is displayed. It was observed that the quality of the

biclusters obtained was better than most of the input biclusters.

The genes of a bicluster are responsible for one biological activity and are expected

to have common patterns/motifs. So to further biologically validate our biclusters, we

searched for common patterns (motifs) from the promoter regions of the genes belonging

to a bicluster. Table 4.15 summarizes the bestp-value for the motif extracted from the

gene sequences of the genes belonging to biclusters extracted byBiETopti on various

data sets. Again the lowp-values indicate biologically significant biclusters. The table

shows the motif analysis of top biclusters ofBiETopti along with their aligned input

biclusters. It is clearly seen that the biclusters obtained byBiETopti were biologically

more significant than most of the input biclusters using motifs also. Promoter regions of

the genes of most of the biclusters were found to have statistically significant common

motif patterns.

Comparison of BiETopti with existing biclustering algorithms

Figure 4.10 shows the comparison of the biclusters produced byBiETopti with the

biclusters produced by existing biclustering algorithms like order-preserving sub ma-

trix (OPSM) [BDCKY03], Cheng and Church (CC) [CC00], BIMAX [PBZ+06] and

ISA [BIB03].

For Yeast and A. Thaliana the biclusters for all the biclustering algorithms were

taken from the BICAT site. For DLBCL and Breast Cancer, biclusters were generated

by executing these algorithms in BICAT tool. Figure shows that none of the existing

algorithms is said to be a clear winner in all the organisms. CC performs best amongst

65



Yeast: − log p value of GO terms

Best 3 of the alignment BiETopti

72,72,61 74

65,65,60 65

72,56,42 57

48,48,48 49

46,43,42 47

46,31,27 46

31,31,31 32

23,23,23 28

11,11,11 12

6,6,5 6

A. Thaliana : − log p value of GO terms

Best 3 of the alignment BiETopti

31,31,25 26

23,23,16 19

31,24,21 21

27,26,26 26

27,23,21 24

22,22,22 23

20,18,18 21

21,20,20 20

23,19,19 19

18,17,16 19

DLBCL : − log p value of GO terms

Best3 of the alignment BiETopti

22,16,5 20

19,16,16 19

17,16,16 16

17,16,16 16

14,2,2 13

8,8,7 9

22,8,6 8

8,8,8 8

13,7,7 7

6,6,6 6

Breast Cancer: − log p value of GO terms

Best 3 of the alignment BiETopti

45,45,45 46

22,22,22 33

18,17,17 26

16,15,14 26

16,15,15 25

16,14,5 25

12,12,12 13

5,5,5 6

3,3,3 4

3,3,2 3

Table 4.14: Comparison of top10 biclusters ofBiETopti with best3 aligned input bi-
clusters on real data sets using GO terms.
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Yeast: − log p value of motifs

Best 3 of the alignment BiETopti

32,24,21 32

32,22,22 32

24,23,22 23

18,15,13 20

15,15,14 20

14,14,14 15

11,10,9 13

9,9,7 12

8,5,5 9

7,7,5 10

A. Thaliana : − log p value of motifs

Best 3 of the alignment BiETopti

22,18,18 45

20,20,18 29

19,18,17 23

18,18,18 18

14,12,10 18

10,9,8 12

12,11,10 11

10,10,10 11

11,9,8 10

8,7,7 8

DLBCL : − log p value of motifs

Best3 of the alignment BiETopti

28,22,16 30

19,18,16 20

18,18,18 20

17,16,16 18

14,12,10 18

10,10,8 10

12,9,9 12

10,10,9 12

13,7,7 13

6,6,6 8

Breast Cancer: − log p value of motifs

Best 3 of the alignment BiETopti

16,15,12 16

15,15,14 16

15,13,12 12

12,11,11 11

10,10,10 10

9,9,8 8

7,7,6 8

5,4,3 5

3,3,3 5

3,2,1 5

Table 4.15: Comparison of top10 biclusters ofBiETopti with best3 aligned input bi-
clusters on real data sets using common motifs.
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the existing algorithms on Yeast. On A. Thaliana and DLBCL, performance of ISA is

best amongst the existing algorithms. OPSM takes the lead in Breast Cancer data set.

BiETopti outperforms the best in each of these organisms except A. Thaliana. However

in DLBCL there is a marginal difference in the performance ofBiETopti and the best

algorithm.

Figure 4.10: BiETopti compared with OPSM, ISA, CC and BIMAX.
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Chapter 5

BiETclassi - Biclustering Ensemble

Technique using Classifiers

The previous chapter explained the ensemble algorithm based on optimization technique.

The results were promising but required the schemes to have equal number of biclusters.

To do away with this restriction we propose another ensemble algorithm,BiETclassi

that makes use of classifiers for the ensembling purpose.

Traditional classifiers such as discriminant analysis and support vector machines

typically label two class data. Various techniques like one-against-all are used to extend

them for multi-label and multi-class classification. These techniques cannot be directly

plugged in for biclusters as the set of attributes (samples) is different for different biclus-

ters. Thus, we extend one-against-all classification methods for multi-label classification

and apply to biclusters one by one. For each label (bicluster), we build a binary class

problem so that the genes associated with that label are in one class and the rest are in

class labeled 0. For each binary class problem, a different set of features corresponding

to the conditions of the bicluster is used.

We study the performance ofBiETclassi on synthetic and real data sets and found

thatBiETclassi produced biclusters that were biologically much more significant than
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not only the input biclusters but also biclusters produced byBiETopti. Besides produc-

ing better biclusters,BiETclassi also improved upon time as compared toBiETopti.

A brief review of classifiers used in our approach is presented in Section 5.1. The

approach is explained in detail in Section 5.2 and the results of various experiments per-

formed are shown in the Section 5.3.

5.1 Preliminaries

In this section we describe the classifiers [DHS01] used in our approach. Discriminant

Analysis (DA) [Fis36] and Support Vector Machine (SVM) [CST00b] are statistical tech-

niques used for classifying multivariate data in different classes. DA seeks a hyperplane

(a discriminator variable) that best separates the scatter of the projected data points on it.

It assumes that the data points are normally distributed in their respective classes on each

variable.

Figure 5.1: Sample Data.

Figure 5.1 shows sample data having 2 classes. Different classes are shown using red

and blue colours. Distribution of the points along x-axis and y-axis is shown in Figures 5.2

and 5.3 respectively. As is visible in the figures, there is a large overlap between the
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Figure 5.2: Projection of data points along x-axis.

Figure 5.3: Projection of data points along y-axis.
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classes thereby implying that the classes are indistinguishable on each of the attributes

individually. A new discriminating dimension is calculated and the projection along this

dimension is shown in Figure 5.4. It shows a decrease in the overlap and thus helps in

classifying the objects in a better way.

Figure 5.4: Projection of data points along the new dimension calculated by DA.

SVM seeks a hyperplane that maximizes the margin between the closest pair of

points, one from each class. The two points are called the support vectors. There exist

multiple hyperplanes that separate the two classes but not all of them are equally good

separators. For the two dimensional data shown in Figure 5.1, The possible separators

(lines here) are shown in Figure 5.5. Figure 5.6 shows one such separator along with its

support vectors.

5.1.1 Discriminant Analysis

Discriminant Analysis establishes relationships between attributes for classifying objects

into one of the several populations, by identifying attributes that best discriminate be-
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Figure 5.5: Various Lines separating the data points in two classes.

Figure 5.6: Hyperplane as calculated by Support Vector Machine.
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tween the members of a group. In DA, the classes represent the dependent variables and

the predictors represent the independent variables. It is a 2-step process of testing and

classification. There is a matrix of total variances and covariances; likewise, there is a

matrix of pooled within-group variances and covariances. The two matrices are com-

pared to find whether or not there is any significant difference between groups and then it

tries to see which of the variables have significantly different means across the groups that

lead to the discrimination. This method maximizes the ratio of between-class variance to

the within-class variance. In DA, data is modeled and projected onto a single dimension

and class assignment is made for a given point.

Suppose that we have a set ofn d dimensional samplesx1, x2.....xn. Let X denote

then × d matrix with data points along the rows and dimensions along the column. Let

n1 denote the number of samples in the subsetD1 labeledω1 andn2 be the number of

samples in the subsetD2 labeledω2. Each component (feature/attribute) of a data point is

assigned a weightwi to compute the discriminate variable. Letw be thed × 1 vector of

weights. LetY be a1× n vector defined as follows

(y1, y2, . . . , yn) = (w
′ · x1,w

′ · x2, . . .w
′ · xn)

Herew
′ · x is the dot product ofw

′
andx.

Further letY is partitioned into the subsetsY1 andY2 corresponding toD1 andD2

respectively. The aim is to findw that maximizes separation between the two classes.

Geometrically, if‖w‖ = 1 eachyi is the projection of the correspondingxi onto a line

in the direction ofw . Actually the magnitude ofw is of no real significance because it

merely scalesy. The direction ofw is important, however. If we imagine that the samples

labeledω1 fall more or less into one cluster while those labeledω2 fall in another, we want

the projections falling onto the line to be well separated. It should be abundantly clear that

if the original distributions are highly overlapping, even the bestw is unlikely to provide

adequate separation and thus the method will be of little use. We now turn to the matter
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of finding a good directionw that provides a good classification. Difference of the sample

means of the projected points is a good measure of separation between the two classes. If

mi denote the d dimensional (1× d) sample mean and is given by

mi =
1

ni

∑
x∈Di

x

then the sample mean for the projected points given by

mi =
1

ni

∑
y∈Yi

y

=
1

ni

∑
x∈Di

w
′ · x = w

′ ·mi

is simply the projection ofmi alongw. It follows that the distance between the projected

means is

|m1 −m2| =
∣∣∣w′ · (m1 −m2)

∣∣∣
This distance can be made arbitrarily large by scaling the difference of sample means

m1,m2 by |w|. Thus to obtain good separation of the projected data we would actually

want the difference between the means to be large relative to some measure of the standard

deviations for each class. Rather than forming the sample variance,scatter for projected

samples is defined for each of the two classes and it is given by

si
2 =

∑
y∈Yi

(y −mi)
2

s1
2 + s2

2 is called the total within-class scatter of the projected samples and(1/n)(s1
2 +

s2
2) is an estimate of the variance of the pooled data. The fisher linear discriminant then

determines the weight vector for which the discriminant function

J(.) =
|m1 −m2|2

s1
2 + s2

2
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is maximum. To obtain J(.) as a function ofw, scatter matricesSw andSB are defined.

Let

Si =
∑
x∈Di

(x−mi)
′
(x−mi)

Then

Sw = S1 + S2

is defined to be the within class scatter matrix. Also,

si
2 =

∑
x∈Di

(
w

′ · x−w
′ ·mi

)2

= w
′
Siw

Then within-class scatter of the projected samples can be written as

s1
2 + s2

2 = w
′
Sww

Similarly the between class scatter defined by separation of the projected means obeys

|m1 −m2|2 =
(
w

′ ·m1 −w
′ ·m2

)2

= w
′
(m1 −m2)

′
(m1 −m2)w

= w
′
SBw

where

SB = (m1 −m2)
′
(m1 −m2)

is the between class scatter matrix.

SW is symmetric, positive semidefinite and usually nonsingular, ifn > d. Like wise

SB is also symmetric and positive semidefinite, but because it is the outer product of two

vectors, its rank is at most one. In terms ofSB andSW the discriminating functionJ

can be expressed as a ratio of the between-class scatter to the within-class scatter and is

written as

J(w) =
w

′
SBw

w′SWw
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5.1.2 Support Vector Machine

SVMs are based on the principle of Structural Risk Minimization. It maximizes the mar-

gin between the points of two classes by solving a convex quadratic programming prob-

lem. The solution to that problem gives us a hyperplane that has the maximum margin

between the two classes. SVM models the boundary between the data points instead of

modeling the projection of data points themselves as in DA. In support vector machines,

a data point is viewed as ad dimensional vector and we want to know whether we can

separate such points with ad − 1 dimensional hyperplane. This is called a linear clas-

sifier. There are many hyperplanes that might classify the data. One reasonable choice

for a good hyperplane is the one that provides the largest separation, or margin, between

the two classes. Thus a hyperplane that maximizes the distance to the nearest data points

on each side is aimed. If such a hyperplane exists, it is known as the maximum-margin

hyperplane and the linear classifier it defines is known as a maximum margin classifier.

Let -1 and +1 be the class labels of the two classes. IfY is the vector of dependent

variables representing the class labels thenY is partitioned into the subsetsY1 andY2

corresponding to the two classes having labels -1 and +1. SVM seeks a hyperplane that

maximizes the margin between the closest pair of points, one from each class. The two

points are called the support vectors. The hyperplane separating the points is given by

w
′ · x + b = 0

Herew is thed× 1 vector of direction of the hyperplane. The aim is to findw andb such

that the separation between the two classes is maximized. Following is true for the points

in the two classes.

w
′ · x + b ≥ +1

w
′ · x + b ≤ −1
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In other words, we have

y(i)(w
′ · x(i) + b) ≥ +1

Equations for the hyperplanes passing through the two support vectorsx+ andx− in the

two classes are given by

w
′ · x+ + b = +1 (5.1)

w
′ · x− + b = −1 (5.2)

SVM tries to maximize the distanceM between these two hyperplanes whereM is given

by

M =
w

′ · (x+ − x−)

|w|
(5.3)

From Equations 5.1 and 5.2

w
′ · (x+ − x−) = 2

Substituting the value in Equation 5.3, the margin is defined as

M =
2

|w|

Maximizing the margin M is then same as minimizing the following

M =
1

2
w

′ ·w

The problem becomes a quadratic optimization problem formulated as follows: Minimize
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1

2
w

′ ·w

subject to

y(i)(w
′ · x(i) + b) ≥ +1 ∀ i

SVM works by solving this quadratic optimization problem and finding values for

w and b. This is illustrated in Figure 5.6.

5.2 BiETclassi

We use the ‘relabeling and voting ’ approach to generate the consensus. Relabeling is

done twice, once to align similar biclusters using label correspondence and second time,

it is done using classifiers like DA and SVM which are basically binary classifiers that

work for two classes. However, in gene expression data, genes may be responsible for

more than two functions. Classifiers that can handle multiple classes need to be used

instead. Extensions of DA and SVM that solve the multi class problem are known to

exist in literature [Bis06], but they do not allow the classes to overlap. To be able to

handle overlapping biclusters, one needs to consider the multi label classification [TK07].

Classifiers that handle multi label and multi class also exist in literature [ZZ06, ZZ07] but

they can not be directly applied for our problem as they work on the same set of conditions

for all the labels. On the other hand in gene expression data, different samples/attributes

define different biclusters. Thus we extend these techniques to suit the need of biclusters.

5.2.1 The Approach

Our algorithm works in four phases. First two phases are same as that inBiETopti

wherein input schemes are generated and then aligned so that similar biclusters in differ-

ent schemes get the same label. One of the input schemes is taken as the reference. As

the number of biclusters returned by ensemble is same as that of the reference scheme,
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we choose the scheme with the largest number of biclusters as the reference scheme, in

order not to miss any bicluster. In phase-III, a classifier is used to predict labels for genes

for each input scheme. This is the main contribution of our approach and we discuss it

in detail in Section 5.2.2. Having predicted the gene labels for each scheme, voting is

used to obtain the final consensus in phase-IV. Voting is also used to obtain labels of the

conditions. Figure 5.7 shows the basic architecture of our algorithm.

5.2.2 Phase III: Relabeling the Genes using a Classifier

In this phase we will discuss how to use classifiers to predict the labels of the genes. The

challenge with using classifiers to predict the labels for the biclustering problem is three-

fold. One, the biclusters are overlapping. Secondly the biclusters are non-exhaustive i.e.

there may be genes/samples that do not belong to any bicluster. Thirdly, different biclus-

ters are defined by a different set of attributes/samples; third being the most important.

Multi-label classifiers are used to address the first problem. In multi-label classi-

fication, an object may belong to more than one class. It is different from multi class

classification, wherein objects may be categorized into more than two classes but an ob-

ject belongs to one class only. We present a method to extend binary classifiers DA and

SVM to handle multi class and multi label data for biclustering. There are broadly two

ways of handling multi label classification [TK07, ZZ14]. The first being the problem

transformation and second being the algorithm adaptation. In problem transformation,

the multi-label problem is transformed into a set of binary classification problems, which

can then be easily handled. In algorithm adaptation, algorithms are adapted to directly

perform multi-label classification instead of transforming the problem. Various problem

transformation methods exist in literature. We have used the first method wherein one

binary classifier is trained for each label. For multi class classification we extend one-

against-all classification methods for biclustering. One against all classification method

involves training a single classifier per class. For each label (bicluster), a binary class
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Biclustering scheme1 (BCS1)

Input Labels

Gene1 0

Gene2 1

Gene3 1,2

Gene4 2

Gene5 3

Gene6 3

Gene7 0

(a)

Bicluster1 - Conditions (1,2)

Input Labels Predicted labels PL1

Gene1 0 0

Gene2 1 1

Gene3 1 0

Gene4 0 1

Gene5 0 0

Gene6 0 0

Gene7 0 0

(b)

Bicluster2 - Conditions (2,3)

Input Labels Predicted labels PL2

Gene1 0 0

Gene2 0 2

Gene3 2 2

Gene4 2 2

Gene5 0 0

Gene6 0 0

Gene7 0 0

(c)

Bicluster3 - Conditions (3,4,5)

Input Labels Predicted labels PL3

Gene1 0 0

Gene2 0 0

Gene3 0 3

Gene4 0 0

Gene5 3 3

Gene6 3 3

Gene7 0 0

(d)

Biclustering scheme1 (BCS1)

Predicted Label PL1 Predicted label PL2 Predicted label PL3 Union of labels Final labels-BCS1

Gene1 0 0 0 0 0

Gene2 1 2 0 1,2 1,2

Gene3 0 2 3 2,3 2,3

Gene4 1 2 0 1,2 1,2

Gene5 0 0 3 3 3

Gene6 0 0 3 3 3

Gene7 0 0 0 0 0

(e)

Table 5.1: Working of Modified Classifier.
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problem is built so that the genes associated with that label are in one class and the rest

are in another class. This method is performed for every bicluster of one scheme except

the one with label 0 (set of genes not belonging to any bicluster are given the label 0).

For each bicluster, the genes in the bicluster are given the label of the bicluster and the

rest of the genes are given the label 0. For each binary class problem, a different set of

features corresponding to the conditions of the bicluster is used to take care of the third

challenge. Finally, a gene is assigned the union of all the labels. This allows us to assign

more than one labels to a gene. This takes care of the overlapping nature of the biclusters.

The process is repeated for every bicluster of one scheme and finally the union of all the

labels is taken to obtain multiple labelsλ
′′
(g) for a geneg.

The working of the algorithm is explained in Table 5.1. The example shown here

has 7 genes and 5 conditions. Data is subjected to a biclustering algorithm to get an input

scheme shown in Table 5.1 (a). It shows the input labels for all the genes according to

the bicluster it belongs to. All the genes of a bicluster along with its condition set are

subjected to a classifier. This is done for every bicluster. The predicted labels of the genes

are shown in Table 5.1 (b)-(d). Note that the set of conditions is different for different

biclusters. Table 5.1 (e) shows the labels that are assigned to the genes after subjecting all

the genes bicluster wise to the classifier and taking the union of all the predicted labels.

Note that label 0 (refers to genes not belonging to class) is not taken into consideration for

taking union. If gene is assigned label 0 by all the biclusters, then only label 0 (refers to

genes not belonging to any bicluster) is assigned to it. The working is pictorially shown in

Figure 5.8. This procedure is then repeated for every scheme to get the new labelsλ
′′
for

all the genes in all the schemes. Algorithm 2 summarizes the computation of new labels

i.e. λ
′′
i (g) for theith scheme,i = 1 . . . H.
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Input : Labelsλ
′
1(g), λ

′
2(g), ..., λ

′
H(g)

Output : Labelsλ
′′
1(g), λ

′′
2(g), ..., λ

′′
H(g)

for i= 1 to H do

for j= 1 to ki do
Train a binary classifier (DA / SVM) with the gene vectors projected

onto the conditions of thejth bicluster and the class labels as{0, j}.

for m = 1 to N do
Predict the labelλ

′′
ij(gm) of the genegm.

end

end

λ
′′
i (gm) =

⋃
j λ

′′
ij(gm)

end

Algorithm 2: Predicting gene labels using a Multi-Label Classifier.

Final Gene Labels

Final labels-BCS1 Final labels-BCS2 Final labels-BCS3 Final labels-BCS4 Final labels-BCS5 Final labels

Gene1 0 0,1 1 0 0 0

Gene2 1,2 1,2 1,2 1 2 1,2

Gene3 2,3 2 1,2 2,3 2 2

Gene4 1,2 1,3 1,3 2,3 1,3 1, 3

Gene5 3 2,3 1,2 3 2,3 3

Gene6 3 2,3 1,2 3 2 0

Gene7 0 0,1 0 1 0 0

Table 5.2: Final Consensus.

5.2.3 Phase IV: Final consensus

Voting is used in this phase to form the consensus. Voting is first done onλ
′′
(g) to

generate the final consensus labelingλ̂(g) for the genes. A label is assigned to a gene

g in the final ensemble if at leastτ number of schemes assign the label tog. Table 5.2

shows the labels assigned to the genes. Here, for representational purpose five schemes

have been ensembled for the final consensus andτ has been taken as 80%.
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Notations:

Let δg(i, l) =1 if l ∈ λ
′′
i (g), i = 1 . . . H

Let δc(i, l) =1 if l ∈ λ
′
i(c), i = 1 . . . H

Input : λ
′′
(g),λ

′
(c)

Output : Final labelingŝλ(g),λ̂(c)

for k= 1 to N do

λ̂(gk) = φ

for l=1 to maxiki do

/* for every label */

computen(gk) =
∑

i δgk
(i, l)

/* compute the number of schemes assigning label

l to the kth gene */

if n(gk) > τ then

λ̂(gk) = λ̂(gk)
⋃
{l}

end

end

end

for k = 1 to d do

λ̂(ck) = φ

for l = 1 to maxiki do
computen(ck) =

∑
i δck

(i, l)

if n(ck) > τ then

λ̂(ck) = λ̂(ck)
⋃
{l}

end

end

end

Algorithm 3: Voting Phase.
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Similarly to obtain the final labelinĝλ(c) for the conditions, voting is done onλ
′
(c)

of the aligned biclusters. This phase is explained in Algorithm 3.

5.3 Experimental Results

Experiments were performed on synthetic as well as real data sets. To obtain a good

threshold value forτ , experiments were performed on data set DS1. The results at varying

threshold are shown in Table 5.3. It was found that the results improved with the increase

in the threshold value, however it tends to decrease after a threshold value 80%. So we

fixed the threshold value for voting at 80% for the rest of the experiments.

tg, tc 50% 60% 70% 80% 90%

-.5,2 0.83 0.84 0.84 0.85 0.80

-.4,2 0.84 0.84 0.84 0.85 0.80

-.35,2 0.96 0.96 0.96 0.98 0.88

1,1 0.73 0.73 0.73 0.74 0.69

0,1 0.56 0.56 0.56 0.57 0.50

Table 5.3: Effect of different voting threshold values on AS on DS1.

5.3.1 Results on Synthetic Data Sets

As in previous chapter, two sets of experiments were performed on both the synthetic

data sets of Prelic (DS1 and DS2). Iterative Signature Algorithm (ISA) [BIB03] was used

as the biclustering algorithm. In the first experiment the seed was changed to generate

the schemes keeping (tg,tc) fixed whereas in the second experiment thetg was changed

to get the input schemes keeping the random gene seed andtc constant. In both the sets

of experiments the algorithm was executed on20 input schemes. The experiments were

repeated20 times and the results were averaged over the runs.
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Performance ofBiETclassi was compared with the best of the input schemes using

BCE and AS. DA and SVM were used for prediction of labels and the algorithms are

referred asBiETDA andBiETSV M respectively. Tables 5.4 and 5.5 compare the

SchemesBest BiETopti BiETclassi

→ BiET BiET

tg, tc ↓ SVM DA

-0.50 , 2 3402 2540 2508 2489

-0.40 , 2 3830 3002 3002 2981

-0.35 , 2 3618 2652 2562 2087

1 , 1 5218 3580 3173 3156

0 , 1 5860 3768 3721 3712

Table 5.4: Best of input schemes vs BiETclassi on DS1 for the first set of experiments
using BCE.

SchemesBest BiETopti BiETclassi

→ BiET BiET

tg, tc ↓ SVM DA

-0.50 , 2 0.82 0.82 0.82 0.83

-0.40 , 2 0.78 0.79 0.79 0.83

-0.35 , 2 0.90 0.91 0.92 0.95

1 , 1 0.69 0.70 0.73 0.73

0 , 1 0.55 0.56 0.56 0.56

Table 5.5: Best of input schemes vs BiETclassi on DS1 for the first set of experiments
using AS.

BCE and AS of the best input schemes and that of the biclusters produced byBiETclassi

on DS1. Tables show results for first set of experiments. The best was computed from the

400 (20 × 20) schemes. The values shown are the average of the values obtained in the
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20 runs of each experiment. Biclusters produced byBiETclassi are also compared with

those produced byBiETopti.

The results for the second set of experiment are shown in Table 5.6. Results are

shown both with BCE and AS.

Evaluation Best BiETopti BiETclassi

Criteria BiET BiET

SVM DA

BCE 3180 2752 2527 2518

AS 0.81 0.82 0.84 0.85

Table 5.6: Best of input schemes vs BiETclassi on DS1 for the second set of experiment.

The following inferences can be drawn from the tables:

• BiETclassi improves upon the performance of the best input schemes.

• Quality of biclusters produced byBiETclassi is superior to those produced by

BiETopti and can be seen in Figures 5.9- 5.10 also.

• BiETDA performs better thanBiETSV M .

Effect of noise

Noisy data set (DS2) of Prelic et al. was used to study the impact of noise on the per-

formance ofBiETclassi. Table 5.7 shows the results for the first set of experiments

using BCE. Table 5.8 gives the AS values for the same. Again, results ofBiETclassi are

shown both with SVM and DA.

Table 5.9 gives the result for the second set of experiment for the synthetic data set

DS2. The tables show thatBiETclassi was able to produce biclusters better than the

best of the input schemes even in presence of noise. Even in noisy data set,BiETDA

performed better thanBiETSV M and alsoBiETDA outperformedBiETopti.
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Figure 5.9: BiETclassi compared with BiETopti on DS1 using BCE.

Figure 5.10: BiETclassi compared with BiETopti on DS1 using AS.
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SchemesBest BiETopti BiETclassi

→ BiET BiET

tg, tc ↓ SVM DA

.90, 1 2865 2431 2314 2300

1, .5 3012 2650 2660 2592

-.35, 2 4187 3256 3187 2891

Table 5.7: Effect of noise on BiETclassi (data set DS2) for the first set of experiments
using BCE.

SchemesBest BiETopti BiETclassi

→ BiET BiET

tg, tc ↓ SVM DA

.90, 1 0.87 0.88 0.89 0.89

1, .5 0.77 0.78 0.78 0.79

-.35, 2 0.50 0.51 0.50 0.65

Table 5.8: Effect of noise on BiETclassi (data set DS2) for the first set of experiments
using AS.

Evaluation Best BiETopti BiETclassi

Criteria BiET BiET

SVM DA

BCE 2588 2312 2113 1981

AS 0.92 0.92 0.95 0.98

Table 5.9: Effect of noise on BiETclassi (data set DS2) for the second set of experiment.
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Time Comparison

The algorithms were also compared on the basis of the time taken by them.

Comparing BiETDA and BiETSVM

Tables 5.4- 5.9 show thatBiETclassi performs better in terms of quality when DA

was used as a classifier as compared to the case when SVM was used as a classifier. Fur-

ther, we computed the average time taken by the bothBiETDA as well asBiETSV M

for the experiments on both DS1 and DS2. The time was only computed for the phase-

II i.e. for running the classifier, it does not include time for generating the schemes i.e.

Phase-I and also time for forming the consensus i.e. Phase-III is not taken into account.

BiETDA took 0.29 seconds on DS1 and0.21 seconds on DS2 whereasBiETSV M

took 7.6 seconds on DS1 and5.88 seconds on DS2 thereby suggesting thatBiETDA

was faster thanBiETSV M .

Comparing BiETclassi and BiETopti

Table 5.10 shows the total time taken byBiETopti andBiETclassi algorithms.

Time shown forBiETclassi is with DA as classifier. Table clearly indicates that the time

was reduced if ensemble was produced using classifiers instead.

SchemesTime(sec) Time(sec)

tg, tc ↓ BiETopti BiETclassi

-0.50 , 2 30.3 18.3

-0.40 , 2 28.5 17.7

-0.35 , 2 27 15.6

1 , 1 51 30.3

0 , 1 46.7 24.9

vary tg 40 22.6

Table 5.10: Time of BiETclassi compared with BiETopti on DS1.
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Effect of changing the reference scheme

Experiments were performed to show the effect of reference scheme on the output. Table 5.11

Ref.Scheme (#BC) BiETDA

π1(11) 0.85

π2(9) 0.77

π3(8) 0.78

π4(7) 0.68

π5(6) 0.59

π6(5) 0.50

π7(5) 0.51

π8(4) 0.59

π9(1) 0.37

DS1

Ref.Scheme(#BC) BiETDA

π1(13) 0.98

π2(12) 0.97

π3(12) 0.99

π4(9) 0.99

π5(9) 0.99

π6(8) 0.88

DS2

Table 5.11: Effect of reference scheme on AS on both the data sets DS1 and DS2.

shows the impact of changing the reference scheme on the results. It is evident that the

results deteriorate as the number of biclusters in the reference scheme reduces. Last row

of the table shows that if a scheme with single bicluster is included and is chosen as a

reference, the performance deteriorates drastically. Study on the noisy data shows that

the results are best when a reference scheme has number of biclusters close to the number

(10) in this case of actual biclusters. Thus, if we have a prior knowledge of the number of

biclusters in the data set, we should choose the scheme with number of biclusters closest

to the actual number of biclusters as the reference. Otherwise, we choose the scheme with

maximum number of biclusters as the reference scheme.
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5.3.2 Results on Real Data Sets

Experimental studies were performed on the expression data set of Yeast, DLBCL, A.

Thaliana and Human Breast Cancer withBiETSV M andBiETDA. On each of these,

we generated input schemes by running ISA each time with hundred different gene seed

vectors. Sizes of the biclusters were kept to be comparable to eliminate the effect of

size of biclusters on thep-values. Tables 5.12 - 5.13 show the top10 biclusters obtained

from BiETclassi along with their aligned input biclusters which clearly show that there

is a huge improvement in the quality of the biclusters obtained. Table 5.12 shows the

GO terms whereas in Table 5.13 evaluation is done on the basis of motifs. As the tables

show,BiETclassi outperforms the best of the input schemes on the real data sets most

of the times. Also the comparison withBiETopti is shown to endorse thatBiETclassi

outperformsBiETopti.

Comparison of BiETclassi with existing biclustering algorithms and BiETopti

Figure 5.11 shows the comparison of the biclusters produced byBiETclassi with the

biclusters produced by existing biclustering algorithms like order-preserving sub ma-

trix (OPSM) [BDCKY03], Cheng and Church (CC) [CC00], BIMAX [PBZ+06] and

ISA [BIB03]. The performance ofBiETclassi is also compared with the previous en-

semble algorithm,BiETopti. BiETclassi outperforms the best in each of these organ-

isms except A. Thaliana where OPSM and ISA perform better.
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Yeast: − log p-value of GO terms

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

72,72,61 74 74 76

65,65,60 65 66 68

72,56,42 57 59 62

48,48,48 49 49 49

46,43,42 47 47 49

46,31,27 46 47 48

31,31,31 32 33 37

23,23,23 28 29 29

11,11,11 12 12 12

6,6,5 6 6 6

A. Thaliana : − log p-value of GO terms

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

31,31,25 26 27 32

23,23,16 19 23 23

31,24,21 21 24 33

27,26,26 26 27 28

27,23,21 24 27 28

22,22,22 23 23 23

20,18,18 21 21 23

21,20,20 20 20 21

23,19,19 19 22 23

18,17,16 19 21 23

DLBCL : − log p-value of GO terms

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

22,16,5 20 21 23

19,16,16 19 19 22

17,16,16 16 18 25

17,16,16 16 16 18

14,2,2 13 14 15

8,8,7 9 9 12

22,8,6 8 8 8

8,8,8 8 8 12

13,7,7 7 11 15

6,6,6 6 6 6

Breast Cancer: − log p-value of GO terms

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

45,45,45 46 48 48

22,22,22 33 35 36

18,17,17 26 27 27

16,15,14 26 30 31

16,15,15 25 25 26

16,14,5 25 26 26

12,12,12 13 13 13

5,5,5 6 7 7

3,3,3 4 4 4

3,3,2 3 3 3

Table 5.12: Comparison of top10 biclusters of BiETclassi with best3 aligned input
biclusters on real data sets using GO Terms.
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Yeast: − log p-value of motifs

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

32,24,21 32 34 35

32,22,22 32 32 33

24,23,22 23 26 26

18,15,13 20 22 23

15,15,14 20 22 22

14,14,14 15 16 18

11,10,9 13 15 15

9,9,7 12 12 13

8,5,5 9 9 9

7,7,5 10 10 10

A. Thaliana : − log p-value of motifs

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

22,18,18 45 48 50

20,20,18 29 30 30

19,18,17 23 25 27

18,18,18 18 18 18

14,12,10 18 19 19

10,9,8 12 13 13

12,11,10 11 12 13

10,10,10 11 11 11

11,9,8 10 11 12

8,7,7 8 8 8

DLBCL : − log p-value of motifs

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

28,22,16 30 32 33

19,18,16 20 21 21

18,18,18 20 20 20

17,16,16 18 19 20

14,12,10 18 19 20

10,10,8 10 10 10

12,9,9 12 13 14

10,10,9 12 12 12

13,7,7 13 14 14

6,6,6 8 8 8

Breast Cancer: − log p-value of motifs

Best3 BiET BiETclassi

of the opti BiET BiET

alignment SVM DA

16,15,12 16 17 17

15,15,14 16 18 19

15,13,12 12 15 15

12,11,11 11 13 13

10,10,10 10 10 10

9,9,8 8 9 9

7,7,6 8 8 8

5,4,3 5 5 5

3,3,3 5 6 6

3,2,1 5 6 7

Table 5.13: Comparison of top10 biclusters of BiETclassi with best3 aligned input
biclusters on real data sets using common motifs.
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Figure 5.11: BiETclassi compared with OPSM, ISA, CC, BIMAX and BiETopti.
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Chapter 6

BiETmetaclus - Biclustering Ensemble

Technique using Metaclustering

Hungarian algorithm, an expensive algorithm in terms of time, needs to be invoked to

align similar biclusters in different input schemes, in bothBiETopti as well asBiETclassi.

Both these algorithms also require an optimization/classification problem to be solved.

This chapter focuses on a technique that does away with the requirement of aligning the

input schemes. Moreover there is no requirement of solving either optimization or clas-

sification problem. The technique BiETmetaclus, instead, pools in all the biclusters and

then group similar biclusters in metaclusters. We propose the use of mutual information

(MI) to find similarity between biclusters. It is believed that biclusters, sharing high con-

tent of information about each other and less information with other biclusters, form a

more cohesive group.

Various similarity measures that have been successfully and satisfactorily used for

several years, capture only the linear relationships between the objects. In particular,

a vanishing correlation coefficient implies absence of only linear dependencies [HG95,

PMBG07, KBG+07, SKD+02, SDSK03]. However, nonlinear relationships like quadratic

or sinusoidal etc. may exist between the genes. Kraskov et al. [KSG04], Steur et al. [SKD+02],
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Butte and Kohane [BK00] and Michaels et al. [MCA+98] have shown, through their work,

that mutual information is a better and general criterion for extracting complex relation-

ships among genes. Kraskov et al. worked with yeast data and found that even though

correlation coefficient between few gene pairs was zero, the mutual information between

them was non zero thus indicating that other non linear dependencies exist between the

genes. Steur et al. showed that higher correlation coefficient implies higher mutual in-

formation but two variables having very low values of correlation coefficient may still

be related to each other. Butte and Kohane also worked with yeast data set. They hy-

pothesized that gene pairs with high mutual information between them are also related

biologically. They constructed networks of various genes having high mutual informa-

tion between them and found that each network corresponded to some biological activity.

They also found mutual information to be a better similarity measure as compared to

linear correlation coefficient. According to Priness et al. [PMBG07], it is resistant to

outliers, noise and missing data.

Metaclusters are obtained by collecting the biclusters with high pairwise mutual

information. The concept of well separated seeds is used to minimize the between meta-

cluster information. Voting is then done on metaclusters to form the final consensus. To

endorse the use of mutual information as a similarity measure, we compare it with Biclus-

ter Similarity Index (BSI) also to form the metaclusters. BSI, discussed in Section 4.1.3,

is the modified form of the measure that has been successfully used to compute similar-

ity between clusters [KG07]. The algorithms using MI and BSI are respectively called

BiETMI andBiETBSI. The results show that the biclusters produced by these al-

gorithms are better than the input biclusters. It was also observed that the biclusters

produced using MI are biologically more significant than the ones produced by the other

similarity measure, BSI. Experiments also show that the time taken is greatly reduced as

compared toBiETopti andBiETclassi. BiETopti algorithm takesO((N + d) ∗ k)3.5

time. BiETclassi uses classifiers like DA and SVM having the complexity ofO(N3).
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The classifier is invokedH · k times in the algorithm. Thus the total time complexity

is O(H · k · N3). BiETmetaclus on the other hand uses similarity measures like Mu-

tual Information and BSI. The time complexity ofBiETmetaclus is O((H · k)2 · Nd).

Ignoring the small constantsH andk time complexity ofBiETclassi, BiETmetaclus

andBiETopti is O(N3), O(Nd) andO((N + d)3.5) respectively. The value ofd is gen-

erally much smaller as compared toN . Thus,BiETmetaclus is much faster than both

BiETopti as well asBiETclassi.

6.1 Preliminaries

We have used two measures of similarity to group biclusters viz. MI and BSI. In this

section we give a brief description of MI. The other measure BSI was discussed in Sec-

tion 4.1.3.

Mutual Information

Mutual Information between two random variables X and Y is a measure of information

contained in X about Y and vice versa. If given a value of X, it is easy to predict the

value of Y then X contains good amount of information about Y. Clearly, if X and Y are

dependent, X and Y can predict each other well and we say that the mutual information

between them is high. And, if X and Y are independent, they cannot predict each others

behavior and we say that the mutual information between them is zero. Mutual informa-

tion is defined as a measure of divergence of the observed joint distribution of X and Y

from the hypothesis that X and Y are independent and is given as:

MI(x, y) = −
∑

x

∑
y

p(x, y) log
p(x) ∗ p(y)

p(x, y)
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As it is a function of the distribution of the variables X and Y, it does not depend on the

actual values taken by X and Y, rather it depends on their probability distributions.

The unit of mutual information is defined corresponding to the base of the logarithm

in the above equation i.e. nats forloge, bits for log2, and Hartleys forlog10. Mutual

information is non negative and symmetrical i.e.MI(X,Y ) = MI(Y,X). Also, mutual

information is zero if and only ifX andY are statistically independent i.e. vanishing

mutual information does imply that the two variables are independent. However, it is not

a true distance between distributions as it does not satisfy the triangle inequality. It does

not require normalization and is robust towards noise, outliers and missing data.

Mutual information is a function of joint probability distribution and the marginal

probability distribution. However, one generally does not have a prior knowledge about

the distributions. Thus one needs to estimate them. Two broad classes of approaches

namely Parametric and Nonparametric are used to estimate the probability distribution

functions. Parametric method involves assuming a model for the probability density func-

tion and then determining the various parameters from the data. However, if the assump-

tion is poor the results are poor. In contrast to the parametric approach no assumption

about the underlying probability density function is made in the nonparametric approach.

Histogram method and Kernel density estimation are two methods of estimating proba-

bility density function by the nonparametric approach.

6.2 BiETmetaclus

Our algorithm works in3 phases. Schemes are generated in phase-I and this is same as

that in the last two chapters. Phase-II deals with the formation of metaclusters and voting

is done to form the consensus in phase-III.
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6.2.1 Phase II: Metacluster Formation

In this step, biclusters of all the schemes are collected in a pool(G) and groups are formed

on the basis of mutual information. To compute mutual information between two biclus-

ters drawn from two different schemes, columns of the membership matrix (as described

in Table 4.4) are used. Groups, called metaclusters are formed so that they share max-

imum information within the biclusters in a group and minimum information with the

biclusters in other metaclusters. Thus metaclusters are formed with the aim to maximize

within metacluster information and minimize between metacluster information.

To be able to form well separated groups, we construct a setS of seed biclusters.

Initially this set is empty. The first seed biclusterBC1 is chosen at random fromG, starred

and then all biclusters with high mutual information withBC1 are grouped together to

form one metacluster. Second seed biclusterBC2 is chosen farthest fromS i.e. the one

that has least mutual information withBC1. Biclusters with high mutual information

with BC2 are put in the second metacluster. Next seed bicluster is chosen farthest from

S i.e. the one that has least mutual information with bothBC1 andBC2. The process

of forming metaclusters and selecting a farthest seed bicluster is repeated until no more

biclusters are left to be grouped. This method of choosing the seed has also been used

in [GA08] and [APW+99]. Figure 6.1 shows the formation of metaclusters in pictorial

form. The pseudo code for this phase is shown in the Algorithm 4.

In the next phase a representative of each metacluster is formed. The number of

output biclusters is thus determined by the algorithm itself without requiring the user to

specify it.

6.2.2 Phase-III: Consensus Formation

Previous phase resulted in the formation of many metaclusters, each having several simi-

lar biclusters in it. In this phase, we select one representative from each metacluster. The
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Figure 6.1: Visualization of metacluster formation.
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Input: G, the set of all the biclusters in the pool.

Let S be the set of seed biclusters.

Initially S is empty.

Initially all the biclusters are ungrouped.

let i = 1

BC∗
i = random(), the first seed bicluster

while no more bicluster is left to be groupeddo
G(i) = Group of biclusters inG with high MI with theBC∗

i

Mark all the biclusters inG(i) as grouped.

S=S ∪BC∗
i

uBC=all ungrouped biclusters

BC∗
i+1=argmink∈uBC(maxBC∗∈SMI(BCk, BC∗))

i = i + 1

end

Algorithm 4: Pseudo code for metacluster formation.

Input: G(i), all metaclusters formed in Phase-II

for all groupsG(i) do
compute frequency of (gene, condition) pairs in all biclusters ofG(i) and

output the representative biclusterBC(i) containing the (gene, condition)

pairs with frequency≥ η.

end

Algorithm 5: Pseudo code for selecting a representative from a metacluster.
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bicluster that shares the maximum information with the rest of biclusters in the metaclus-

ter is a good candidate for the representative of the group. However, such a candidate has

the limitation of being one of the biclusters in the metacluster. On the other hand, there

may be some (gene, condition) pairs in other biclusters (of the same metacluster) that are

important and should have been a part of the final bicluster. Thus, instead, we form the

representative bicluster on the basis of frequency of (gene, condition) pairs. Frequency

of all (gene, condition) pairs is calculated and the pairs whose value is greater than the

thresholdη are reported as the elements of the final bicluster. Experimentally also, it was

observed that forming a representative in this manner is a better alternative than the first

method. Thus, this method was used in the experiments performed. Algorithm 5 provides

the pseudo code for this phase.

6.3 Experimental Results

Experiments were performed both on synthetic data sets and real gene expression data sets

to show the efficiency of our approach.BiETmetaclus involves formation of metaclus-

ters which are formed by grouping similar biclusters. MI/BSI is used to find the similarity

between the biclusters and in our experiments, biclusters with similarity 90% or more are

grouped to form a metacluster. The process of forming the metaclusters is repeated till

no more bicluster is left to be grouped. After forming the metaclusters, representative

of each metacluster is formed. This is achieved by taking those (gene, condition) pairs

having frequency greater than or equal to threshold valueη fixed at 60%. The biclus-

ters produced byBiETmetaclus were also compared with both the previous algorithms,

BiETopti andBiETclassi.
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6.3.1 Results on Synthetic Data Sets

Two sets of experiments were performed as in the previous two algorithms on both the

data sets of Prelic. In the first experiment the seed was changed to generate the schemes

keeping (tg,tc) fixed whereas in the second experiment thetg was changed to get the input

schemes keeping the random gene seed andtc constant. In both the sets of experiments

the algorithm was executed on20 input schemes. The experiments were repeated20 times

and the results were averaged over the runs.

SchemesBest BiETopti BiETclassi BiETmetaclus

tg, tc ↓ BiETDA BiETBSI BiETMI

-0.50 , 2 3402 2540 2489 2540 2540

-0.40 , 2 3830 3002 2981 2998 2990

-0.35 , 2 3618 2652 2087 2562 2426

1 , 1 5218 3580 3156 3521 3428

0 , 1 5860 3768 3712 3740 3740

Table 6.1: Best of input schemes vs BiETmetaclus on DS1 for the first set of experiments
using BCE.

SchemesBest BiETopti BiETclassi BiETmetaclus

tg, tc ↓ BiETDA BiETBSI BiETMI

-0.50 , 2 0.82 0.82 0.83 0.82 0.82

-0.40 , 2 0.77 0.79 0.83 0.81 0.81

-0.35 , 2 0.90 0.91 0.95 0.92 0.93

1 , 1 0.69 0.70 0.73 0.71 0.72

0 , 1 0.54 0.56 0.56 0.56 0.56

Table 6.2: Best of input schemes vs BiETmetaclus on DS1 for the first set of experiments
using AS.
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Table 6.1 compares the performance ofBiETmetaclus with the best input schemes

and also that ofBiETclassi andBiETopti on DS1 in terms of BCE. We concluded in

the last chapter thatBiETDA performed better thanBiETSV M so for the comparison,

only BiETDA is taken. The values shown in the table are the average of the values

obtained in the20 runs of each experiment. Column2 gives the best values, of the in-

put schemes, over all the runs. The table shows the results for first set of experiments.

Similarly Table 6.2 compares the performance of various algorithms in terms of other

evaluation method, AS. The results for the second set of experiment are shown in Ta-

ble 6.3.

Evaluation Criteria Best BiETopti BiETclassi BiETmetaclus

BiETDA BiETBSI BiETMI

BCE 3180 2752 2518 2732 2725

AS 0.81 0.82 0.85 0.82 0.83

Table 6.3: Best of input schemes vs BiETmetaclus on DS1 for the second set of experi-
ment.

The following inferences can be drawn from the tables:

• BiETmetaclus improves upon the performance of the best input scheme both with

MI as well as BSI.

• BiETmetaclus performs better thanBiETopti in terms of quality and is shown

in Figures 6.2 and 6.3 where all the three approaches are compared.

• BiETMI performs better thanBiETBSI.

However, observe thatBiETclassi performs better thanBiETmetaclus.
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Figure 6.2: BiETmetaclus compared with BiETopti and BiETclassi on DS1 using BCE.

Figure 6.3: BiETmetaclus compared with BiETopti and BiETclassi on DS1 using AS.
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Effect of noise

The performance ofBiETmetaclus was also studied on data set (DS2) of Prelic et al. to

see the impact of noise. Tables 6.4- 6.5 show the results using BCE and AS for the first

set of experiments. Again, results ofBiETmetaclus are shown with both the similarity

measures used: MI and BSI. Similarly results for the second set of experiment are shown

in Table 6.6. The tables show thatBiETmetaclus was able to extract biclusters better

than the best of the input schemes even in presence of noise. Also, even in presence of

noiseBiETMI performs better thanBiETBSI.

SchemesBest BiETopti BiETclassi BiETmetaclus

tg, tc ↓ BiETDA BiETBSI BiETMI

.90, 1 2865 2431 2300 2412 2412

1, .5 3012 2650 2592 2631 2618

-.35, 2 4187 3256 2891 3203 3195

Table 6.4: Effect of noise on BiETmetaclus (data set DS2) for the first set of experiments
using BCE.

SchemesBest BiETopti BiETclassi BiETmetaclus

tg, tc ↓ BiETDA BiETBSI BiETMI

.90, 1 0.87 0.88 0.89 0.88 0.88

1, .5 0.77 0.78 0.79 0.78 0.78

-.35, 2 0.50 0.51 0.65 0.52 0.54

Table 6.5: Effect of noise on BiETmetaclus (data set DS2) for the first set of experiments
using AS.
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Evaluation Criteria Best BiETopti BiETclassi BiETmetaclus

BiETDA BiETBSI BiETMI

BCE 2588 2312 1981 2100 2091

AS 0.92 0.92 0.98 0.95 0.96

Table 6.6: Effect of noise on BiETmetaclus (data set DS2) for the second set of experi-
ment.

Time Comparison of BiETopti, BiETclassi and BiETmetaclus on DS1

It was observed thatBiETclassi is able to produce biologically better biclusters than

BiETmetaclus but at the cost of time as it can be clearly seen from Table 6.7. The

SchemesTime(sec) Time(sec) Time(sec)

tg, tc ↓ BiETopti BiETclassi BiETmetaclus

-0.50 , 2 30.3 18.3 9.9

-0.40 , 2 28.5 17.7 8.9

-0.35 , 2 27 15.6 8.4

1 , 1 51 30.3 23.1

0 , 1 46.7 24.9 13.96

vary tg 40 22.6 7.6

Table 6.7: Time of BiETmetaclus compared with BiETopti and BiETclassi on DS1.

time shown is the total time taken for all the approaches. Time taken for the approach

BiETclassi is with DA as the classifier. ForBiETmetaclus, time has been shown

wherein mutual information is used as the similarity measure. The time taken byBiETmetaclus

is less than time taken byBiETclassi. BiETmetaclus wins overBiETclassi as far as

time is concerned. Thus, there is a tradeoff between the two approaches as far as quality

and time are concerned. Note that with respect toBiETopti, BiETmetaclus improves

as regard to quality as well as time.
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6.3.2 Results on Real Data Sets

Experimental studies were performed on the real expression data sets withBiETmetaclus.

Tables 6.8- 6.9 shows the top10 biclusters obtained fromBiETmetaclus along with

their aligned input biclusters which clearly show that there is improvement in the quality

of the biclusters obtained. Table 6.8 shows the comparison based on GO terms whereas

Table 6.9 shows the comparison using motifs. The tables show thatBiETmetaclus

outperforms not only the best of the input schemes but also the biclusters produced by

BiETopti. Tables also show thatBiETMI performs better thanBiETBSI.

Time Comparison of BiETopti, BiETclassi and BiETmetaclus on real data sets

BiETclassi is able to produce biologically better biclusters on real data sets thanBiETmetaclus

but at the cost of time as it can be clearly seen from Table 6.10.BiETmetaclus wins

overBiETclassi as far as time is concerned. Thus, there is a tradeoff between the two

approaches as far as quality and time are concerned. Note that with respect toBiETopti,

BiETmetaclus improves as regard to quality as well as time.

Comparison of BiETmetaclus with existing biclustering algorithms, BiETopti and

BiETclassi

Figure 6.4 shows the comparison of the biclusters produced byBiETmetaclus, with

the biclusters produced by existing biclustering algorithms like order-preserving sub ma-

trix (OPSM) [BDCKY03], Cheng and Church (CC) [CC00], BIMAX [PBZ+06] and

ISA [BIB03]. Figure also shows comparison with the previous two ensemble algorithms,

BiETopti and BiETclassi. BiETmetaclus outperforms the best of the bicluster-

ing algorithms in each of these organisms except A. Thaliana. As far as the ensemble

algorithms are concerned, performance ofBiETmetaclus is betweenBiETopti and

BiETclassi.
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Organism BiETopti BiETclassi BiETmetaclus

Time(sec) Time(sec) Time(sec)

Yeast 8200 801 337

A.Thaliana 565 225 165

DLBCL 647 125 86

Breast Cancer 180 155 39

Table 6.10: Comparison of time on real data sets

Figure 6.4: BiETmetaclus compared with OPSM, ISA, CC, BIMAX, BiETopti and Bi-
ETclassi
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Chapter 7

Concluding Remarks

The task of analyzing the humongous gene expression data is greatly simplified by orga-

nizing the genes into groups that are responsible for different biological processes, thereby

helping the discovery, validation and understanding of various diseases. Biclustering al-

gorithms are particularly useful for this job as a gene may be responsible for more than

one biological activity and different set of conditions may trigger different genomic ac-

tivities. Several biclustering algorithms exist in literature, each one delivering a solution

based on some heuristics. A solution that performs well for one heuristic may not fare

well so well with respect to another. Idea of ensembling various solutions is to help an

end user to obtain a solution that conforms to most of them. As the solution is obtained

by combining the knowledge contained in various solutions, it is expected to be better

than (or at least as good as) most of them with the advantage that the end user need not

worry about which heuristic is best suited for the application at hand. Ensemble methods

have also been designed with the aim to provide solutions which are more robust towards

random seeds and input parameters.

We have presented three ensemble algorithms for biclustering solutions in this work.

BiETopti, the first algorithm is based on an optimization technique. In order to formulate

the objective function and the constraints, global labels are defined. The algorithm forces
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a limitation of having fixed number of biclusters in the input schemes. To do away with

this limitation, another algorithm BiETclassi, based on classifiers is designed. As an

individual bicluster is subjected to a classifier on the reduced set of conditions, we do not

have to worry about the number of biclusters being same in all the schemes.

The results obtained by both the algorithms are promising but both of them are

compute intensive as they involve label correspondence and an optimization problem to be

solved both of which require lot of computation. Thus, another algorithm, BiETmetaclus,

based on the technique of metaclustering using mutual information is proposed.

Experiments were performed on synthetic data sets as well as real data sets. All the

three ensemble algorithms produced biclusters that are better than the input biclusters.

Comparing the three: both BiETclassi and BiETmetaclus perform better than BiETopti

in terms of time as well as quality. There is a tradeoff between BiETclassi and BiET-

metaclus. BiETclassi provides superior biclusters than BiETmetaclus when quality is

considered and BiETmetaclus comes out to be the clear winner when time is considered

as the comparing parameter.

It would be interesting to see how the benefits of both BiETclassi and BiETmetaclus

can be exploited to improve upon the quality and the time simultaneously. It would be

nice to see the application of these algorithms in other domains as well.
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